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The Bitter Lesson

Validation Loss
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State-of-the-art

models are and

will be huge.

Figure from Brown, T. et al. “Language Models are
Few-Shot Learners.” ArXiv abs/2005.14165 (2020)



Infeasible to train and experiment with large models

Estimated Training Costs on NVIDIA DGX-1 Model Time Cost CO2

BigGAN 15 days 27216 €  372.96 kg

FUNIT 14 days 254.02 £ 348.10 kg

Input: The man went to the [MASK]l . He bought a [MASK]2 of milk .
Labels: [MASK], = store; [MASK], = gallon

Sentence A = The man went to the store
Sentence B = Penguins are flightless.
Label = NotNextSentence

Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk.
Label = IsNextSentence

BERT 10.3 days 186.88 £ 256.10 kg



Must find ways to make optimal use of available models

Language Expert

Image Expert

Recombined Expert

A yellow tennis ball with the
face of a dog.

e.g. Masked
Language Modeling

T

A yellow tennis ball with the
[MASK] of a [MASK].

e.g. Class Conditional
Image Generator

n04409515: tennis ball

A yellow tennis ball with the
face of a dog.

How can we cOMbine and reuse experts . solve new tasks

which neither of them can perform on its own?



Hidden representations are awesome and reusable

Trainings Task Task 1 Task 2

Representation 1




Hidden representations contain distilled expert knowledge

Representation 2

Translate between
model representations!

RepresentaV




Shared and disjunct information in representations
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Network-to-Network Translation

Conditional
Invertible Neural Network (cINN)
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Training for Translation

Train in reverse direction vV

Disentangle v from z4 N
min (v, z1) Nia»

A

Translate in forward direction |4,
Sample possible translations

<2 NP(22\21)

zo = 7(V]21), v ~ q(v) q(v)
Loss
[(v,21) < E;, KL (p(v|21)][q(v))
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Experiment #1: (S)BERT-to-BigGAN

|
Data: Image-Text Pairs cINN

A yellow and black
bird sitting in the - Sentence-BERT —
grass

L.

BigGAN
Generator




Results: (S)BERT-to-BigGAN

Text-to-Image translation between Sentence-BERT and BigGAN,; utilize a
captioning model to produce captions of BigGAN images during training.

A blue bird sitting A close up of

on top of a field a plant with broccoli

A fighter jet flying
through a cloudy sky

A yellow bird is perched

on a branch

A school bus A pizza sitting on top

parked in a parking lot of a white plate

Two people on a paddle boat A man riding skis

in the water down a snow covered slope




Experiment #2: Superresolution with AE-to-AE

_ !
Data: LR-HR Pairs cINN

Encoder N
Low Res

Decoder
High Res
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Results: Superresolution with Net2Net

Animalfaces 16 X 16 to 256 X 256 CelebA-HQ/FFHQ 32 X 32to 256 X 256

— Combine experts from different scales



Experiment #3: Image-to-Image with Suitable Classifiers

Data: Source-Target Pairs
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Results: Colorization and Inpainting with Net2Net

Use suitable experts for each task:

Stylized ResNet-50 for Vanilla ResNet-50 for
Edge-Aware Edge-to-Image Texture-Aware Inpainting

input Decoded samples z = D(7~(v|z))




Experiment #4: Segmenter-to-Autoencoder

Data: Image

Decoder

h_______




Results: Semantic Image Synthesis Synthesis with Net2Net

®(xr) translating ®(x) onto target domain of AE g with different samples v ~ ¢(v)




Results: Controlling Variability with Net2Net

Use suitable layers of experts to control variability:

Argmax of Segmentation Expert Logits of Segmentation Expert
for high variability for low variability
_ B input _ B
— Decoded samples Z = D (771 (v|2)) - cfc Gon Decoded samples T = D(77 1 (v|z))




Results: Exemplar-Guided Synthesis with Net2Net

exemplar y




Results: Exemplar-Guided Synthesis with Net2Net

exemplar y




Data: Image and Random
Transformation

e.g. random
warp

/
/
/
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Experiment #5: Unsupervised Disentangling
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Results: Unsupervised Disentangling of Shape and Appearance




Experiment #6: Unpaired Domain Transfer

Data: Images (and Labels)

0/1/1/0
10/1]...

Label-Predictor

Decoder




Results: Unpaired Domain Transfer with Net2Net

Oil-Portrait to Photography Anime to Photography FFHQ to CelebA-HQ




Broad Applicability

No gradients of experts required —> Labels of human experts can be used

Attribute Modification

input method hair glasses gender input method beard age smiling
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Experiment #7: What if we use an MLP?

Data: Image

Segmentation
Model

. . Decoder




Experiment #7: What if we use an MLP?

What if we use a standard feedforward network instead?
— Falils because the translation is not uniquely determined.

x  method early layer: A(ze) middle layer: A(zo) last layer of f: A(ze)
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Experiment #7: What if we use an MLP?

What if we use a standard feedforward network instead?
— Falils because the translation is not uniquely determined.

x  method early layer: A(ze) middle layer: A(zo) last layer of f: A(ze)
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Try it yourself!

S

NEURAL INFORMATION
’i PROCESSING SYSTEMS
ole

Check out our paper

and visit our github page

GitHub

https://github.com/CompVis/net2net

to train net2net for your own models.
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Model Time [days] Hardware Energy [kWh] Cost [EUR] (CO; [kg]
our cINN <1 1 NVIDIA Titan X 14.4 3.11 4.26
BigGAN [3] 15 8 NVIDIA V100 1260.0 272.16 372.96
FUNIT [40] 14 8 NVIDIA V100 1176.0 254.02 348.10

Thanks for your attention!

BERT [14] 10.3 8 NVIDIA V100 865.2 186.88 256.10



https://github.com/CompVis/net2net

