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Abstract

Video understanding calls for a model to learn the char-
acteristic interplay between static scene content and its dy-
namics: Given an image, the model must be able to pre-
dict a future progression of the portrayed scene and, con-
versely, a video should be explained in terms of its static
image content and all the remaining characteristics not
present in the initial frame. This naturally suggests a bi-
jective mapping between the video domain and the static
content as well as residual information. In contrast to com-
mon stochastic image-to-video synthesis, such a model does
not merely generate arbitrary videos progressing the initial
image. Given this image, it rather provides a one-to-one
mapping between the residual vectors and the video with
stochastic outcomes when sampling. The approach is nat-
urally implemented using a conditional invertible neural
network (cINN) that can explain videos by independently
modelling static and other video characteristics, thus lay-
ing the basis for controlled video synthesis. Experiments on
four diverse video datasets demonstrate the effectiveness of
our approach in terms of both the quality and diversity of
the synthesized results. Our project page is available at
https://bit.ly/3dg90fV .

1. Introduction
Anticipating and predicting what happens next are key

features of human intelligence that allow us to understand
and deal with the ever-changing environment that governs
our everyday life [10]. Consequently, the ability to foresee
and hallucinate the future progression of a scene is a cor-
nerstone of artificial visual understanding with applications
including autonomous driving [51, 52, 27], medical treat-
ment [7, 18, 8], and robotic planning [20, 24, 12].

Predicting and synthesizing plausible future progres-
sions from a given image requires a deep understanding
of how scenes and objects within video are depicted, in-
terplay with each other, and evolve over time. While an

*Indicates equal supervision.

Figure 1. Our approach establishes a bijective mapping between
the image and the video domain by introducing a residual repre-
sentation ν describing the latent scene dynamics. This allows us
not only to synthesize diverse videos but also to extend our ap-
proach to gain control over the video synthesis task.

image provides information about the observed scene con-
tent, such as object appearance and shape, the challenge is
to understand the missing information constituting poten-
tial futures, such as the scene dynamics setting the scene in
motion. Due to the ambiguity and complexity of capturing
this information, many works [45, 25, 14, 81] directly focus
on predicting likely video continuations, often resorting to
simplifying assumptions (e.g., dynamics modelled by opti-
cal flow [21, 64]) and side information (e.g., semantic key-
points [61, 78, 49, 22, 5]). However, truly understanding
the synthesis problem not only requires to infer such image
continuations but, conversely, also demands when observ-
ing a video sequence to describe and represent the instanti-
ated scene dynamics animating its initial frame.
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Consequently, the image-to-video synthesis task should
be modelled as a translation between the image and video
domains, ideally by an invertible mapping between them.
Since the content information describing an image only ac-
counts for a small fraction of the video information, in par-
ticular missing the temporal dimension, learning an invert-
ible mapping requires a dedicated residual representation
that captures all missing information. Once learned, given
an initial image and an instantiation of the latent residual,
we can combine them to synthesize the corresponding fu-
ture video sequence.

In this paper, we frame image-to-video synthesis as an
invertible domain transfer problem and implement it using
a conditional invertible neural network (cINN) illustrated in
Fig. 1. To account for the domain gap between images and
videos, we introduce a dedicated probabilistic residual rep-
resentation. The bijective nature of our mapping ensures
that only information complementary to that in the initial
image is captured. Using a probabilistic formulation, the
residual representation allows to sample and thus synthe-
size novel future progressions in video with the same start
frame. To reduce the complexity of the learning task, we
train a separate conditional variational encoder-decoder ar-
chitecture to compute a compact, information preserving
representation for the video domain. Moreover, our spe-
cific framing of learning the residual representation allows
to easily incorporating extra conditioning information to ex-
ercise control over the image-to-video synthesis process.

Our contributions can be summarized as follows:

• We frame image-to-video synthesis as an invertible do-
main transfer problem and learn a dedicated residual
representation to capture the domain gap.

• Our framework naturally extends to incorporate ex-
plicit conditioning factors for exercising control over
the synthesis process.

• Extensive evaluations on four diverse video datasets,
ranging from structured human motion synthesis to
subtle dynamic textures, show strong results demon-
strating the effectiveness of our approach.

2. Related Work

Video synthesis. Video synthesis involves a wide range
of tasks including video-to-video translation [80], im-
age animation [70, 71], frame interpolation [57, 4], and
video prediction. The latter can be divided into uncondi-
tional [75, 16] and conditional video generation (the fo-
cus of our work). Conditional video generation can be de-
scribed as finding a future progression given a set of context
frames in a deterministic [77, 82, 54, 6] or stochastic man-
ner [45, 25, 14, 3], as pursued here. Several works decrease

the complexity of the synthesis task by using keypoint anno-
tations [55, 61] as conditioning information. A major draw-
back of this approach is the requirement of semantic key-
point labels which limit consideration to highly structured
objects, like humans, and thus exclude the broader range of
imagery we consider, e.g., natural scenes. Recent methods
aim at improving video prediction quality by use of high ca-
pacity architectures with high computational demands, op-
erating in the latent [63] or pixel-space [81], or using atten-
tion [16]. In contrast, we propose a model for understanding
the image-to-video synthesis process by learning a bijective
transformation between the image and video domains using
a dedicated residual representation.
Dynamic texture synthesis. Previous work has given spe-
cial attention to generating dynamic textures. This work
can be divided into two groups: (i) methods that exploit the
statistics of dynamics textures [74, 84, 86] and (ii) learning-
based approaches [87, 90, 48, 21, 85]. To generalize to
other video domains, beyond dynamic textures, we intro-
duce a learning-based approach. MDGAN [87] generates
landscape videos from a static scene in a deterministic man-
ner. Several methods (e.g., [21, 90]) consider optical flow
in their video generation pipeline. The use of optical flow
limits application to specific types of imagery, like clouds,
at the exclusion of other dynamic textures which grossly
violate standard optical flow assumptions [74]. DeepLand-
scape [48] extends the structure of StyleGAN [37] to ani-
mate landscape images. Their model does not attempt to
learn full temporal dynamics of videos and works only by
a complex optimization scheme for inference, similar to
[26] for style transfer. In contrast, our approach allows for
efficient feedforward image-to-video synthesis while also
maintaining visual quality and temporal coherence.
Invertible Neural Networks. Invertible neural networks
(INNs) are bjiective functions which makes them attractive
for a variety of tasks, such as analyzing inverse problems
[1], interpreting neural networks [23], and representation
learning [35]. In particular, INNs can be implemented as
normalizing flows [65], a special class of likelihood-based
generative models which have recently been applied to vari-
ous tasks, such as image synthesis [40, 2, 62], domain trans-
fer [68, 67, 23, 89], superresolution [50, 89], and video syn-
thesis [43]. In contrast, we use a conditional normalizing
flow model to learn a dedicated residual latent, capturing
information not contained in the input image. This allows
us to both more efficiently learn the bijective mapping and
to consider explicit controlling factors.

3. Method
Our goal is to learn the interplay between images and

video by explaining video in terms of a single image and the
(stochastic) information not captured by the image about the
video. Together the deterministic and stochastic content al-
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Figure 2. Overview of our proposed framework. We learn an information preserving video representation z using our conditional
generative model consisting of an encoder qφ as well as the corresponding decoder pψ . The decoder consists of dedicated video residual
blocks shown in bottom right. After establishing the video representation, we learn a bijective transformation T conditioned on the starting
frame x0 and an optionally provided control factor η. During inference, we sample a residual ν, encapsulating the scene dynamics, from
the prior distribution and use Tφ to obtain the video representation z. Using our decoder we can then synthesize novel video sequences.
Training and inference is indicated by the dotted and solid lines, respectively.

low us to tackle the problem of image-to-video synthesis.
In Sec. 3.1, we begin by motivating and introducing our
conditional bijective framework for image-to-video map-
pings and Sec. 3.2 describes the learning process. Sec. 3.3
presents our generative model for video synthesis operating
on our learned transformation. Finally, in Sec. 3.4 we ex-
tend our model to directly exercise control over factors cap-
tured in the residual latent, e.g., direction of motion. Fig. 2
provides an overview of our approach.

3.1. Bijection for Image-to-Video Synthesis

Given an initial image, x0 ∈ Rdx , image-to-video syn-
thesis generates a video sequence, X = [x1, . . . , xT ]. This
problem is inherently underdetermined with many possible
videos conceivable based on x0. As a result, we cannot
synthesize or explain a video merely with a single frame,
but require additional information, ν, such as the scene dy-
namics. Video synthesis can then be framed as mapping x0

and a residual ν onto a videoX or, equivalently, a represen-
tation z thereof,

z = T (ν;x0) . (1)

Commonly, stochastic video prediction methods [45, 25,
55] only focus on synthesizing arbitrary realistic videos for

a single initial or a sequence of frames. In contrast, under-
standing this synthesis process not only demands to explain
the missing information ν to be inferred, but also to recover
the residual information from video so that it can be modi-
fied subsequently. Explaining a video thus requires to esti-
mate this residual information ν, so that x0 and ν together
are isomorphic to the representation z of the video X . Con-
sequently, T needs to be a conditional bijective mapping
between videos and their description in terms of a starting
frame x0 and the remaining residual information ν.

3.2. Inferring an Explicit Residual Representation

Given a single frame x0, a multitude of videos are possi-
ble with a corresponding z,

z ∼ p(z|x0) . (2)

Since ν contains all the information of z not captured in x0

and T is conditionally bijective, we can invert (1) to obtain
the residual

ν = T −1(z;x0) . (3)

Then, by the change-of-variables theorem for probability
distributions, T −1 transforms p(z|x0) as

3



p(z|x0) =
p(ν|x0)

|det JT (ν;x0)|
(4)

= p(T −1(z;x0)|x0) · | det JT −1(z;x0)| , (5)

where JT denotes the Jacobian of the transformation T and
|det[·]| the absolute value of the determinant of its input.
Using the transformed distribution, p(z|x0), we can now
directly learn our transformation T and the distribution
p(ν|x0) by maximum likelihood estimation (MLE). To this
end, we need to choose an appropriate prior distribution,
which can be analytically evaluated and easily sampled.
Since we factorize the residual information ν from the
starting frame x0, we can assume p(ν|x0) = q(ν) and,
thus, resort to the widely used standard normal distribution
q(ν) = N (ν|0,1) [41, 88, 28]. Moreover, we parametrize
T as an invertible neural network [58, 17, 42] Tθ with pa-
rameters θ which, given the image x0, translates between
the representations z and ν. Thus, we arrive at the negative
log-likelihood minimization problem

min
θ∈Θ

Ez,x0

[
log q(T −1

θ (z;x0))− log |det JT −1
θ

(z;x0)|
]
.

(6)
By simplifying using the standard normal prior and drop-
ping resulting constant terms, we finally arrive at our final
objective function

min
θ∈Θ

Ez,x0

[
‖T −1
θ (z;x0)‖22 − log |det JT −1

θ
(z;x0)|

]
.

(7)
Due to the information-preserving, isomorphic mapping Tθ,
ν indeed captures the latent information in X not explained
by x0.

To generate a video representation z based on an initial
frame x0, we first sample a residual representation ν ∼ q(ν)
and then apply (1) to obtain z = Tθ(ν;x0).

3.3. Generative Model for Video Synthesis

We now learn a decoding p(X|z) to synthesize video
sequences based on z. Since we require z to be a com-
pact, information-preserving video representation, we also
need to learn the corresponding encoding q(z|X). Simul-
taneously learning both is naturally expressed by an au-
toencoder [41]. Moreover, to optimally enable learning
the transformation Tθ, we consider the following modelling
constraints: (i) the representation z of the input should
be maximally information-preserving to fully capture the
residual dynamics information, (ii) we model the residual
ν to be a continuous probabilistic model, thus the bijection
property of Tθ requires q(z|X) to be a strictly positive den-
sity, and (iii) reducing the complexity of the representation
z eases the task of learning the bijective mapping Tθ. Thus,
while still fully capturing scene dynamics in z, we ideally

exclude all information in the video which is already present
in the initial image x0.
Learning p(X|z) and q(z|X). Variational latent mod-
els [41] are a straightforward choice for stochastic au-
toencoders. To address (iii) above, we use a condi-
tional variational autoencoder [88] with a parametrized en-
coder qφ(z|X) and a parametrized, conditional decoder
pψ(X|x0, z) with (φ, ψ) being their trainable parameters.
Such models encourage the distribution of information
among latent variables due to the regularization of the ca-
pacity of the latent encoding [15, 91, 11]. Thus, using x0

as a conditioning to represent most of the scene content, the
complexity of z can be reduced by forcing the network ca-
pacity to focus on capturing the latent information in X . To
balance this with maximally preserving the latent residual
information in X , we introduce a weighting parameter β to
the standard variational lower bound [11],

Lpψ,qφ = Ez∼qφ(z|X) [log pψ(X|x0, z)]

− βDKL(qφ(z|X)||q(z)) ,
(8)

where q(z) denotes a standard normal prior on the encoder
qφ. The first term optimizes the synthesis quality of the de-
coding process, thus maximizing information-preservation.
While the second term regularizes qφ(z|X) to match the
prior q(z) which constrains its capacity and, thus, encour-
ages the distribution of information among x0 and z to
ease subsequent learning of Tθ. Hence, β allows us to di-
rectly balance the informativeness of z and its complex-
ity [15, 91, 11].
Building the video synthesis model. The design of gen-
erative architectures significantly influences their synthesis
capabilities, especially when dealing with highly complex
data. In our conditional model this particularly affects the
interplay between information in x0 and z in pφ(X|z, x0).
To this end, we construct the conditional decoder pψ us-
ing a sequence of n dedicated video residual blocks operat-
ing on increasing spatial and temporal feature resolutions.
To optimally facilitate the interplay between z and the con-
tent information in x0, we combine them both in each block
and, thus, at all scales of pψ . Fig. 2 illustrates the gen-
eral structure of our video residual blocks used for decod-
ing to a video. The conditioning x0 is incorporated using a
SPADE [59] normalization layer to preserve semantic infor-
mation throughout the generator. The video representation
z is added by means of an ADAIN [37] layer to provide
video information at all scales of the decoder. Our encoder
qφ is implemented as a 3D-ResNet [31] to capture the scene
dynamics evolving over time in an input video.
Overall training objective. Following common prac-
tice [41], we train our conditional model, (8), using an L1

reconstruction loss. To emphasize perceptual quality [44]
we use a frame-wise perceptual loss `φ [19, 36]. Similar to
previous work [16, 80], we use a discriminator DS applied
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Figure 3. Stochastic video synthesis on Landscape [87] showing
subtle motions. Red arrows indicate the direction of motion. Best
viewed as video provided in the supplemental.

Method LPIPS ↓ FID ↓ DTFVD ↓ FVD ↓ DIV VGG ↑ DIV I3D ↑
MDGAN2 [87] 0.49 68.9 2.35 385.1 – –
DTVNet2 [90] 0.35 74.5 2.78 693.4 0.00 0.00
DL2,† [48] 0.41 41.1 1.73 351.5 – –
AL2 [21] 0.26 16.4 1.24 307.0 0.97 0.71
Ours 0.23 10.5 0.59 134.4 0.71 1.22

Table 1. Quantitative evaluation of video synthesis quality and
diversity on Landscape [87]. Numeric superscripts indicate the
source of the results, cf. Sec. 4.3. The diversity score based on the
I3D [73] trained on DTDB [30] can be found in the supplemental.
† provided pretrained model from DL [48] was trained on their
unreleased dataset.

to each frame and DT on the temporal level. Both discrim-
inators are optimized using the hinge formulation [46, 9].
Thus, the overall training objective can be summarized as

L = Lpψ,qφ + LDT + LDS . (9)

Please see the supplemental for further details of our loss.

3.4. Controllable Video Synthesis

There are many factors comprising the latent residual ν.
Understanding the image-to-video process allows us to di-
rectly exercise control over such factors and thus over the
progression of the depicted scene in the input image x0.
Assuming η ∈ Rdη represents such a factor, e.g., the tar-
get location of a moving object, we can explicitly model
it while learning our bijective mapping Tθ as Tθ(ν;x0, η).
Note, now ν constitutes the residual latent information to
both x0 and η. Since such individual factors are typically
low in information themselves, in general there is no benefit
in considering them when learning the conditional decoder
pψ in contrast to the richer information in x0. Image-to-
video synthesis now extends to additionally manually ad-
justing η to a fixed value η∗ to infer a video representation

Figure 4. Stochastic video synthesis on iPER [47] showing struc-
tured, diverse human motion. Best viewed as video provided in
the supplemental.

Method FVD ↓ DIV VGG ↑ DIV I3D ↑
SAVP3 [45] 368.6 0.00∗ 0.01∗

SRVP3 [25] 336.3 0.34 1.01
IVRNN3 [14] 191.4 0.23 0.57
Ours 132.9 0.50 1.63
Ours w/o cINN 180.6 0.32 1.21
Ours w/o x0 381.5 0.73 2.15
Ours w/o ADAIN 156.7 0.48 1.60

Table 2. Quantitative evaluation of video synthesis quality and di-
versity on iPER [47]. Numeric superscripts indicate the source of
the results, cf. Sec. 4.3. ∗ SAVP experienced mode collapse due
to training instabilities originating from the two involved discrim-
inators.

z = Tθ(ν;x0, η
∗) which is then used to synthesize a video

sequence using pψ .

4. Experiments
We evaluate the efficacy of our video synthesis method

on a diverse set of four video datasets which range from hu-
man motion to stochastic dynamics as encompassed by nat-
ural landscape scenery. Video prediction results and com-
parisons are best viewed as videos which are available in
the supplemental and on our project page1. Implementation
details can be found in the supplemental. Our PyTorch [60]
implementation can be found on our GitHub page2. Unless
otherwise stated, we generate 16 frame predictions.

4.1. Datasets

Here, we summarize the four diverse datasets used in our
evaluation. We train all models on a sequence length of 16.

1https://bit.ly/3dg90fV
2https://bit.ly/3t66bnU
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Method Fire Vegetation Waterfall Clouds
LPIPS ↓ FID ↓ FVD ↓ DTFVD ↓ DIV ↑ LPIPS ↓ FID ↓ FVD ↓ DTFVD ↓ DIV ↑ LPIPS ↓ FID ↓ FVD ↓ DTFVD ↓ DIV ↑ LPIPS ↓ FID ↓ FVD ↓ DTFVD ↓ DIV ↑

DG3 [84] 0.18 29.4 361.3 0.40 – 0.22 71.6 290.3 0.86 – 0.25 143.4 1680.6 2.41 – 0.17 73.5 217.5 0.40 –
AL3 [21] 0.28 48.4 1475.9 11.42 0.74 0.28 48.9 271.0 1.48 0.93 0.32 124.3 1847.8 5.94 0.98 0.27 38.7 142.1 0.76 1.52
Ours 0.23 24.2 376.8 0.79 1.10 0.21 18.2 123.8 0.52 0.86 0.25 66.8 1126.5 2.52 0.61 0.25 18.3 179.3 0.73 0.98

Table 3. Quantitative evaluation of video synthesis quality and diversity (based on VGG [72]) on DTDB [30]. The diversity score based
on the I3D [73] trained on DTDB [30] can be found in the supplemental. Note, DG [84] directly optimizes on test samples. Numeric
superscripts indicate the source of the results, cf. Sec. 4.3.

A detailed description of the evaluation protocol for each
dataset can be found in the supplemental.
Landscape [87] consists of ∼ 3000 time-lapse videos of
dynamic sky scenes, e.g., cloudy skies and night scenes
with moving stars. This dataset contains a wide range of
sky appearances and motion speeds. Following previous
work [87, 90], we evaluate on a sequence length of 32
frames. We compare with recent work on landscape syn-
thesis [87, 21, 90, 48]. To generate sequences of length 32
we apply our model sequentially, meaning we use the last
predicted frame from the last generated 16 frame block as
input for the next set of 16 frames.
Dynamic Texture DataBase (DTDB) [30] contains more
than 10,000 dynamic texture videos. For evaluation, we fo-
cus on the following classes: fire, clouds, vegetation, and
waterfall. Each texture class consists of 150 to 300 videos.
We train one model for each texture (same as for [21, 84])
on a sequence length of 16 on a resolution of 128× 128.
BAIR Robot Pushing [20] consists of a randomly moving
robotic arm that pushes and grasps objects in a box. It con-
tains around 40k training and 256 test videos. This dataset
is used by prior work as a benchmark due its stochastic na-
ture and the real-world application. We follow the standard
protocol [81, 76, 16, 63] and evaluate on a sequence length
of 16 frames on a resolution of 64× 64.
Impersonator (iPER) [47] is a recent dataset that contains
humans with diverse styles of clothing executing various
random actions. The entire dataset contains 206 videos with
a total of 241, 564 frames. We follow the train/test split de-
fined in [47] which leads to training set and test sets con-
taining 180k and 49k frames, respectively. We evaluate our
model on a sequence length of 16 on a 64× 64 resolution.

4.2. Evaluation Metrics

Synthesis quality. We evaluate the video synthesis quality
using the Fréchet Video Distance (FVD) [76] which is sen-
sitive to both perceptual quality and temporal coherence.
This metric represents the spatiotemporal counterpart to the
Fréchet Inception Distance (FID) [32] which is based on
an I3D network [73] trained on Kinetics [38], a large-scale
human action dataset. To evaluate dynamic textures, we in-
troduce the Dynamic Texture Fréchet Video Distance (DT-
FVD) by replacing the pre-trained network with one we
trained on DTDB for classification [30]. The motivation
behind introducing DTFVD is that we seek a metric that
is sensitive to the types of dynamics encapsulated by dy-
namic textures, rather than human action-related motions

Figure 5. Stochastic video synthesis on DTDB [30] for diverse
texture categories. Best viewed as video provided in the supple-
mental.

as captured by FVD. To further evaluate dynamic textures,
we also evaluate perceptual quality in terms of the FID [32]
and the Learned Perceptual Image Patch Similarity (LPIPS)
[19, 36] metrics.
Diversity. Photorealism and plausible dynamics are not the
only factors we are interested in. In addition, our model is
capable of stochastically generating plausible videos from a
single image. Following previous work [45] on video syn-
thesis, we measure the diversity between video sequence
predictions given an initial frame x0 as their average mu-
tual distance in the feature space of a VGG-16 network [72]
pre-trained on ImageNet [69]. In contrast to [45], we use the
Euclidean distance instead of the Cosine distance. More-
over, we also report diversity on pre-trained I3D [73] mod-
els (similar to above) which is sensitive to both appearance
and motion instead of comparing samples frame-wise. We
discuss and compare our chosen diversity measures in the
supplemental.

4.3. Quantitative Evaluation

For comparison, we use reported performance from the
corresponding paper (marked by 1), where possible, oth-
erwise we report numbers based on pretrained models
(marked by 2) or retrained models using the official code
(marked by 3) provided by the author.
Landscape. Tab. 1 provides a summary of our evalua-
tion on Landscape in terms of perceptual quality and tem-
poral coherence. As can be seen, we generally outper-
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Method FVD ↓ DIV VGG ↑ DIV I3D↑
Video Flow1 [43] 131.0 – –
SRVP2 [25] 141.7 0.93 1.65
IVRNN3 [14] 121.3 0.69 1.13
SAVP1,2 [45] 116.4 0.98 1.70
LVT1 [63] 125.8 – –
DVD-GAN1 [16] 109.8 – –
Video Transformer1 [81] 94.0 – –
Ours 99.3 0.98 1.93
Ours w/o cINN 134.5 0.59 0.94
Ours w/o x0 272.6 2.40† 2.48†

Ours w/o ADAIN 131.2 0.78 1.73

Table 4. Quantitative evaluation and ablation study of generation
quality and diversity on BAIR [20]. Numeric superscripts indicate
the source of the results, cf. Sec. 4.3. † denotes high diversity due
to artifacts.

form all methods across all metrics. Animating Landscape
(AL) [21] stores the motion embeddings of all training in-
stances in their codebook and uses them to generate videos
during inference. In this way, AL is able to reproduce the
diversity of the training videos. DTVNet [90] does not
enforce a distribution over their representation and conse-
quently is limited to deterministic video generations. Deep-
Landscape [48] (DL) does not learn dynamics from videos,
but rather uses a manually constructed set of homographies.
The pretrained model provided by DL was trained on their
unreleased dataset. In contrast, we explicitly model and
learn the dynamics distribution and by that, are able to syn-
thesize novel dynamics to set scenes in motion.
DTDB. We observe similar results on DTDB (Tab. 3) on
nearly all dynamic textures (fire, waterfall, and vegetation)
across all perceptual quality and coherence metrics. For the
clouds, AL achieves better results due to the fact that this
motion can be faithfully described by optical flow. Here,
we also consider results from methods dedicated to dynamic
texture synthesis [84, 86] as strong baselines. These meth-
ods are not exactly comparable as they directly optimize on
test samples. We only present results for DG [84], as Xie et
al. [86] did not converge when trained on all test samples.
BAIR. We achieve strong results in terms of video quality
(Tab. 4), even when compared with the computationally ex-
pensive transformer based approach [81]. In terms of diver-
sity, we are on par with the state-of-the-art stochastic video
prediction approaches.
iPER. The evaluation of articulated human motion is pre-
sented in Tab. 2. We achieve superior results to recent ap-
proaches for video prediction [25, 14, 45] in terms of FVD
and diversity. Note, that we only condition on one frame
in comparison to the baselines which use two [45, 14] and
eight context frames [25].

4.4. Qualitative Evaluation

Image-to-video synthesis. We provide samples for all
datasets. On Landscape [87] we see that our model is able to

Figure 6. Qualitative evaluation of diversity on BAIR [20].
Stochastic video synthesis: (top two rows, left-to-right) input
frame and last frame from a BAIR sequence and four frames rep-
resenting the last frames from sampled videos generated using
the input frame alone. The generated frames show a high degree
of stochasticity in terms of the end effector position, as desired.
Controlled video synthesis: (bottom two rows, left-to-right) in-
put frame and last frame from a BAIR sequence, and four frames
representing the last frames from sampled videos generated using
both the input frame and the 3D end effector position in the last
frame. The end effector position in the last frame is in close agree-
ment with the position control input, as desired.

synthesize realistic samples (see Fig. 3) from diverse, com-
plex scenes captured in the input image. In Fig. 4, we show
samples on iPER [47] which illustrates the complexity of
motion in the dataset. In Fig. 5, we visualize one sample
per DTDB class which shows the variety of dynamic tex-
tures used for evaluation. Lastly, Fig. 6 (top two rows) show
the diversity in our video samples by way of the differences
across the last generated frame per sample on BAIR [20].
Controllable video synthesis. A strength of our model is
the ability to exert explicit control over the synthesis pro-
cess. As described in Sec. 3.4, we control this process by
introducing a factor η. Here, we consider two different
factors for controllable video synthesis on BAIR [20] and
DTDB [30]. On BAIR we condition the synthesis process
on the 3D location of the robot arm’s end effector in the
last frame; we use the location provided in the groundtruth.
Fig. 6 (bottom two rows) shows several samples of the last
frame of each sequence of our controllable synthesis. It can
clearly be seen that the last frames of our samples match
closely to the groundtruth end frame. As a second example,
this time on DTDB [30], we condition the video synthesis of
clouds based on the 2D direction of motion, again through
manipulating η. This is visualized in Fig. 7 where four dif-
ferent directions are considered. To aid in the visualization,
we also include the optical flow fields, estimated with [33],
to show the consistency between the motion direction used
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Figure 7. Examples of controlling video synthesis of clouds in
DTDB [30] starting at frame x0 using motion direction inputs (in-
dicated by arrows). We show intermediate frames x7 and x15. The
color wheel indicates flow direction.

for conditioning and the direction realized in the generated
videos. As can be seen, the conditioning and generated mo-
tion directions are in close agreement. For results on con-
trolled video-to-video synthesis (cf. Sec. 3.4), please refer
to the supplemental.
Motion transfer. Finally, we illustrate the capability of our
model to transfer a motion contained in one sequence to a
set of initial frames for video synthesis. Fig. 8 illustrates
this process using Landscape [87], where the top row con-
tains the motion to be transferred and the bottom three rows
show the generated video sequences realized by combining
the transferred motion and the initial frames. As can be
clearly seen, the original motion is successfully transferred
to each of the scenes.

4.5. Ablation study

To evaluate the design choices of our approach, we now
perform ablation studies on BAIR [20] and iPER [47]:
(Ours w/o x0) represents implementing our video genera-
tor, pψ , without conditioning on the input image, x0, thus z
also captures the full scene content information, (Ours w/o
ADAIN) similarly denotes removing the ADAIN input of z
in our proposed Video ResBlk, i.e., pψ only has access to z
via the bottleneck and (Ours w/o cINN) stands for removing
the cINN resulting in a cVAE framework.

In Tab. 2 and Tab. 4, we observe significant performance
drops for all ablations compared to our full model (Ours).
In particular removing the conditioning image, x0, from the
generator, pψ , greatly affects the synthesis quality. This is
due to the generator not having direct access to the static in-
formation depicted in the initial frame x0. When removing
the ADAIN input of z from our Video ResBlk, the infor-

Figure 8. Transferring motion across videos on Landscape [87].
(top row, left-to-right) source video for target motion. (bottom
three rows, left-to-right) animating different starting frames by
transferring motion from source video. Red arrows indicate the
2D direction of motion. Best viewed as video provided in the sup-
plemental.

mation of z is now only available at the lowest scale of pψ ,
in contrast to the multi-scale information flow in our full
model. Moreover, the cVAE-only model (w/o cINN) results
in worse performance both in quality and diversity, which
can be explained by the trade-off between synthesis quality
and capacity regularization, as discussed in Sec. 3.3.

5. Conclusion
In summary, we introduced a novel model for under-

standing image-to-video synthesis based on a bijective
transformation, instantiated as a cINN, between the video
and image domains plus residual information. The proba-
bilistic residual representation allows to sample and synthe-
size novel, plausible progressions in video with the same
initial frame. Moreover, our framework allows for incorpo-
rating additional controlling factors to guide the image-to-
video synthesis process. Our empirical evaluation and com-
parison to strong baselines on four diverse video datasets
demonstrated the efficacy of our stochastic image-to-video
synthesis approach.
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Supplemental
A. Additional Visualizations

For each of our experiments conducted in the main pa-
per, we provide additional video material, consisting of 17
videos in total. To further highlight the benefits of our pro-
posed framework, in the course of our supplemental video
material, we compare to five approaches. Due to the collec-
tive large size of the videos, the supplemental with the
corresponding videos is provided on our project page.
For each video, multiple cycles are shown (indicated left-
bottom) as well as the corresponding video playback rate in
frames-per-second (FPS) (right-bottom). The file structure
of our provided video material is as follows:

supplemental_material_222
|
+--A1-Landscape
|
+--A2-iPER
|
+--A3-DTDB
|
+--A4-BAIR
|
+--A5-Controllable_Video_Synthesis
|
+--A6-Failure_Cases

We next discuss the video material for each experi-
ment individually. Each subsection matches its cor-
responding file (e.g., ‘A.1.Landscape’ corresponds to
‘...--A1-Landscape’) which contains the discussed
video sequences.

A.1. Landscape

For the Landscape dataset [87], we provide the cor-
responding video (Landscape_samples.mp4) to the
samples depicted in Fig. 3 in the main paper. Addi-
tionally, we show a qualitative comparison to previous
work, i.e., AL [21], DTVNet [90], and MDGAN [87]
in Landscape_comparison.mp4, with ‘GT’ denoting
the ground-truth. We clearly observe that our model syn-
thesizes more appealing and realistic video sequences com-
pared to the the competing methods. Both MDGAN [87]
and DTVNet [90] produce blurry videos when using the of-
ficially provided pretrained weights and code from the re-
spective webpages. While AL produces decent animations
in the presence of small motion, when animating fast mo-
tions, however, warping artifacts are present, cf. e.g., row
3. These artifacts become even more evident when AL is
applied to DTDB (Sec. A.3). In contrast, our method pro-
duces realistic looking results in the case of both small and

large motions. Next, we evaluate the diversity of the gen-
erated samples in Landscape_diversity.mp4. The
video contains multiple future progressions for a given start-
ing frame, x0. It can be seen that our approach pro-
duces diverse samples capturing a broad range of motion
directions, as well as speeds. Moreover, we demonstrate
in Landscape_longer_duration.mp4 the capabil-
ity of our model to synthesize longer sequences (48 frames)
by sequentially applying our model on the last frame of the
previously predicted video sequence.

A.2. iPER

For the iPER dataset [47], we provide the correspond-
ing video (iPER_samples.mp4) to the samples depicted
in Fig. 4 in the main paper. We further provide a qualita-
tive comparison to the best performing method IVRNN [14]
on iPER in iPER_comparison.mp4with ‘GT’ denoting
the ground-truth. Our method produces more natural mo-
tions, e.g., row 3, compared to [14]. Note, that both meth-
ods suffer from artifacts due to the low image resolution of
64× 64, such as vanishing hands in motion.

A.3. DTDB

For each dynamic texture from DTDB [30] used in
our main paper, we provide examples (Clouds.mp4,
Fire.mp4, vegetation.mp4, Waterfall.mp4) for
stochastic image-to-video synthesis for random starting
frames, x0, comparing our proposed approach to AL [21]
and DG [84]. As described in the main paper, DG [84]
is directly optimized on test samples, thus overfitting di-
rectly to the test distribution. Consequently, we observe that
their generations almost perfectly reproduce the ground-
truth motion which is most evident for the clouds texture.
However, their method suffers from blurring due to opti-
mization using an L2 pixel loss. Similar to the comparisons
on the Landscape dataset (Sec. A.1), AL [21] has problems
with learning and reproducing the motion of dynamic tex-
tures exhibiting rapid motion changes, such as fire. This
is explained by the susceptibility of optical flow to inac-
curacies when capturing very fast motion, as well as dy-
namic patterns outside the scope of optical flow, e.g., flicker.
Moreover, in the clouds examples (last row) AL wrongly
sets the landscape into motion. Our model, on the other
hand, produces sharp video sequences with realistic look-
ing motions for all textures.

A.4. BAIR

In BAIR_comparison.mp4, we provide a qualitative
comparison to a strong baseline, IVRNN [14], on the BAIR
dataset [20]. While both approaches are able to render the
robot’s end effector and the visible environment well, we
observe significant differences when it comes to the effec-
tor interacting with or occluding background objects. An
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example of this difficulty can be seen when interacting with
the object in the middle of the scene in row 2. IVRNN
is unable to depict the object structure and texture during
the interaction which results in heavy blur due to averag-
ing over all possible future states. In contrast, this inter-
action looks much more natural in the video sequence pre-
dicted by our model (also row 2). Moreover, the last row
(back of the scene, right) illustrates a problem of IVRNN
which sometimes occurs in the presence of object occlu-
sions. Specifically, the object which is occluded at the
beginning is eventually revealed and is synthesized as a
blurry texture, by that, averaging over all possible realiza-
tions. Again, our model does not suffer from this prob-
lem and correctly handles object occlusions. Additionally,
BAIR_diversity.mp4 qualitatively illustrates the pre-
diction diversity of our model by animating a fixed starting
frame x0 multiple times. Again, ‘GT’ denotes ground-truth.
Our model synthesizes diverse samples by broadly covering
motions in the x, y, and z directions.

A.5. Controllable Video Synthesis

In this section, we present qualitative experiments for
the following controlled video prediction task: controlled
image-to-video synthesis, motion transfer, and controlled
video-to-video synthesis.
Controlled image-to-video synthesis. The video
Endpoint_BAIR.mp4 illustrates several image-to-video
generations while controlling η = (x, y, z), the 3D end
effector position, similar to Fig. 6 in our main paper. It
shows that, while in each example the effector approxi-
mately stops at the provided end position (end frame of
GT), its movements between the starting and end frame,
which are inferred by the sampled residual representations
ν ∼ q(ν), exhibit significantly varying and natural progres-
sions. Moreover, in Direction_Clouds1.mp4we pro-
vide additional video examples for controlling the direction
of cloud movements with η, similar to Fig. 7 in our main
paper. We observe that our model renders crisp future pro-
gressions (row 2-5) of a given starting frame x0, while fol-
lowing our provided movement control (top row).
Motion transfer. Next, we analyze the application of our
model for the task of directly transferring a query motion
extracted from a given landscape video X̃ to a random start-
ing frame x0. To this end, we extract the residual represen-
tation ν̃ of X̃0 by first obtaining its video representation z̃ =
q(z|X̃) and corresponding residual ν̃ = T −1

θ (z̃; x̃0) with
x̃0 being the starting frame of X̃ . We use ν̃ to animate the
starting frame x0. Transfer_Landscape.mp4 shows
that our model accurately transfers the query motion, e.g.,
as the corresponding direction and speed of the clouds, to
the target landscape images (rows 1-3, left-to-right).
Controlled video-to-video synthesis. In controlled video-
to-video synthesis, we explicitly adjust the initial factor

η̃ of an observed video sequence X̃ . To this end, we
first obtain its video representation z̃ = qφ(z|X̃) fol-
lowed by extracting the corresponding residual information
ν̃ = T −1

θ (z̃; x̃0, η̃). Subsequently, to generate the video se-
quence depicting our controlled adjustment of X̃ , we sim-
ply choose a new value η̃ = η̃∗ and perform the image-
to-sequence inference process. This can be seen in the
video Direction_Clouds2.mp4 using cloud video se-
quences from DTDB [30]. In each example (second row),
the motion direction of the query video (leftmost) is ad-
justed by the provided control (top row). To highlight that
the residual representations ν in these cases actually corre-
spond to the query video, we additionally animate the initial
image of the query videos by sampling a new residual rep-
resentation ν ∼ q(ν) and apply the same controls (bottom
rows). We observe that, while the directions of the syn-
thesized videos are identical, their speeds are significantly
different, as desired. In the case of video-to-video synthe-
sis, the movement speed remains the same, in contrast to
the image-to-video case, where the movement speed has
changed due to the changed residual representation.

A.6. Failure Cases

We highlight two types of failure cases we observed
which are visualized in the video Failure_cases.mp4:

• When the starting frame depicts a complex posture
(e.g., folded arms or a leg in the air) on iPER [47]
the model has difficulty synthesizing realistic contin-
uations.

• While the Landscape dataset [87] mainly covers natu-
rally progressing cloud motions, there is also a small
subset of fast timelapse videos. Due to the underrep-
resentation of such examples in the dataset, our model
struggles to correctly capture fast paced timelapse data
without explicitly resorting to data-balancing tech-
niques during training.

B. Implementation Details
Here, we provide a detailed overview of our network

architecture as well as the training procedure. The Py-
Torch [60] implementation can be found on our GitHub
page3.

B.1. Network Details

Encoder. The encoder qφ(z|X) follows the structure of a
3D ResNet-18 [31] using GroupNorm [83] as a normaliza-
tion layer. Two convolutions with a kernel size of 4 × 4
are used to obtain an one-dimensional latent representa-
tion for representing the mean µ and log variance log σ2.

3https://bit.ly/3t66bnU
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During training, we sample from qφ(z|X) using the the
reparametrization trick [41, 66].
Decoder. The decoder pψ(X|x0, z) consists of n = 6
video residual blocks, with each block followed by nearest-
neighbor upsampling to upscale the feature map in space
and time (except the last one). This structure is illustrated
in Fig. 9. The video representation, z, is inserted into the
generator using a fully connected layer matching the ini-
tial feature map. The channel factor, chf , defines the num-
ber of channels and by that, the depth of the model. For
BAIR and iPER, we set chf to 64, otherwise we set it to
32. Depending on the dataset, time length, and resolution,
the last two up-scaling layers needs to be adjusted. The
video representation z is inserted to the decoder using a
fully connected layer matching the initial feature map. We
use GroupNorm [83] in SPADE [59] and instance normal-
ization in the ADAIN [37] layer. If the input and the output
channels do not match, a 1 × 1 convolution is used to ad-
just the channel dimensions. For matching the output chan-
nels, we use a 3D convolution followed by a Tanh activa-
tion function. Moreover, spectral norm [56] is used in the
decoder.
Bijective Transformation. The bijective transformation,
Tθ, is realized as a normalizing flow consisting of a stacked
sequence of nf invertible neural networks (INNs) operat-
ing on the video representation, z. We use nf = 20 in-
vertible blocks for all datasets. Each block consists 8 nor-
malizing flows consisting of actnorm [40], affine coupling
layers [17], and fixed shuffling layers, following previous
work [67]. Each affine coupling layer is parameterized by
two fully connected layers. In every affine coupling layer,
we additionally insert the conditioning information follow-
ing previous work [2, 67]. The feature representation for the
starting frame x0 is obtained by a pretrained Autoencoder
optimized for reconstructing images.
Discriminators. For the static discriminator, a patch dis-
criminator [34] is used and for the temporal discriminator a
3D ResNet [31].

B.2. Training Details

The loss objective for the generative model of a video
sequence X = [x1, . . . , xT ] ∼ pX(X) ∈ RdX with the
corresponding starting frame x0 ∈ Rdx and a video repre-
sentation z ∼ qφ(z|X) ∈ Rdz can be written as

Lpψ,qφ =EX∼pX (X)

z∼qφ(z|X)

[
λ[‖ X − pψ(X|x0, z) ‖1

+ `φ(X, pψ(X|x0, z))]−DT (pψ(X|x0, z))

−DS(pψ(X|x0, z)) + λF `F (X, pψ(X|x0, z))

]
+ βDKL(qφ(z|X)||q(z)) ,

(10)

Figure 9. Overview of the decoder structure.

where `F denotes the feature matching loss [79] to stabilize
the training. The hyperparameters λ and λF are both set to
10.

The loss objective for the temporal discriminator can be
written as

LDT = EX∼pX(X)

[
ρ(1−DT (X)) + λGP ‖ ∇DT (X) ‖22

]
+ EX∼pX (X)

z∼qφ(z|X)

[ρ(1 +DT (pψ(X|x0, z))],

(11)

where ‖ ∇DT (X) ‖22 denotes the gradient penalty [53, 29]
to stabilize the discriminator training and ρ the ReLU acti-
vation function. The weighting factor λGP was set to 10.

For the spatial discriminator, the objective can be formu-
lated as

LDS = EX∼pX(X)[ρ(1−DS(X)]

+ EX∼pX (X)

z∼qφ(z|X)

[ρ(1 +DS(pψ(X|x0, z))].
(12)

The overall loss objective can be summarized as

L = Lpψ,qφ + LDT + LDS . (13)

Our video synthesis model is trained using Adam [39] with
a learning rate of 2 · 10−4, β1 = 0.5, β2 = 0.9, weight
decay of 10−5, and exponential learning rate decay. The di-
mension of z is set to dz = 64 for all datasets. The weight-
ing term β of the Kullback-Leibler divergence loss DKL is
set to β = 1 · 10−5. For the controllable video synthesis
task, we discretize the conditioning ν1 to one-hot vectors.
For the 3D end effector position, the x, y and z axis is dis-
cretized into 10 bins. For the clouds, the motion direction is
discretized into 36 bins. The 3D end effector position was
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Method Landscape Fire Vegetation Waterfall Clouds
AL[21] 1.49 0.36 0.30 0.80 1.22
Ours 3.41 1.42 0.98 1.11 1.51

Table 5. Diversity scores based on the I3D [73] trained on
DTDB [30]. The average difference between ground-truth samples
are a factor of ∼ 1000 smaller for the I3D [73] network trained on
DTDB [30] as the one trained Kinetics [38]. For presentation pur-
poses, the numbers in the table have been multiplied by a factor of
1000.

provided by [20] and for the clouds [30] we manually la-
belled the direction. The normalizing flow, Tθ, was trained
using Adam [39] with a learning rate of 1 · 10−5 and linear
learning rate decay.

C. Evaluation Details
C.1. Diversity Metric

Besides synthesis quality, diversity is the main criteria
we use to evaluate and compare stochastic video synthesis
approaches. The assessment of diversity is typically based
on measures utilizing feature representations of pretrained
models [45, 92]. For instance, SAVP [45] uses a VGG
network [72] trained for classification on ImageNet [69] to
yield frame-wise representations of video sequences. Based
on these representations, videos are compared based on
their frame-wise differences measured using a given dis-
tance metric. The guiding intuition is that more diverse
sample sets should exhibit larger feature differences on av-
erage. To this end, SAVP [45] uses the Cosine distance.
We argue that this evaluation distance has a major draw-
back: the Cosine distance only measures the angle between
feature vectors, thus discarding crucial information repre-
sented by the vector norms. For instance, two data points
may lie approximately on a line (i.e., a Cosine distance of
0) but still are located far from each other. Hence, diversity
is measured based on incomplete information.

To circumvent this issue, we replace the Cosine distance
with the Euclidean distance which also takes the magni-
tude of a vector into account. Moreover, to explicitly cap-
ture temporal information, we also investigate replacing the
frame-based VGG feature extractor with an I3D model [73]
which directly yields representations that capture the ap-
pearance and dynamics of the entire video sequence. Tab. 6
compares the discussed diversity measures. It can be seen
that independent of the diversity measure, the order of the
approaches is the same. We employ both VGG MSE and
I3D MSE measures in our experiments. Note that the I3D
feature extractors have been trained on similar datasets as
the videos to be evaluated, i.e., Kinetics [38] for human mo-
tion [47] and DTDB [30] for Landscape [87]. Moreover,
we report the missing diversity scores based on the I3D [73]
from the main paper on Landscape [21] and DTDB [30] in
Tab. 5.

Method VGG Cosine VGG MSE I3D MSE
SAVP†,3 [45] 0.000 0.00 0.01
SRVP3 [25] 0.040 0.34 1.01
IVRNN3 [14] 0.023 0.23 0.57
Ours 0.076 0.50 1.63

Table 6. Comparison of different diversity metrics on iPER [47]. †

SAVP experienced mode collapse due to training instabilities orig-
inating from the two involved discriminators. The VGG based fea-
ture extractors have been pretrained on ImageNet [69]. The I3D
feature extractor has been pretrained on Kinetics [13]. 3 denotes
models trained using the official code from their corresponding
webpages.

C.2. Evaluation Protocol

For comparisons on each dataset, we use the reported
numbers from the corresponding paper, where possible,
otherwise we use pretrained models or train models from
scratch using the code from the official webpage4. Here, we
list the evaluation protocol for each dataset.
BAIR [20]. We follow the standard protocol [76] for com-
puting the FVD score by evaluating videos on a sequence
length of 16 on a resolution of 64 × 64 using all 256 test
videos. Diversity is measured by predicting five future
progression given the starting frames from all 256 test se-
quences and computing the Euclidean distance in the VGG-
16 [72] as well as in the I3D [73] feature space between the
corresponding generated videos.
iPER [47]. For evaluating the FVD score, we use 1000
randomly sampled sequences from the test set as well as
the corresponding generations. Note, for a fair comparison,
we concatenate the last conditioning frame to the generated
rather than all conditioning frames since previous work con-
dition on up to eight frames. This results in a sequence of
length 17 for computing the FVD score. For computing the
diversity, we predict five future progression for each of the
1000 test sequences and measure the diversity based on that.
Landscape [87]. We create an evaluation set by randomly
sampling six times sequences of length 32 from each test
video with length over 32 resulting in 918 videos. Based on
these sequences, FVD, DTFVD, LPIPS, and FID are com-
puted. As explained in the main paper, our model is trained

4

https://github.com/edouardelasalles/srvp

https://github.com/facebookresearch/improved vrnn

https://github.com/alexlee-gk/video prediction

https://github.com/jianwen-xie/Dynamic generator

https://github.com/zilongzheng/STGConvNet

https://github.com/endo-yuki-t/Animating-Landscape

https://github.com/zhangzjn/DTVNet

https://github.com/weixiong-ur/mdgan
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on a sequence length of 16 but applied two times by us-
ing the last predicted frame as input for the next prediction.
For diversity, we again generate five future progressions for
each sequence of the 918 evaluation sequences and use the
same procedure described for BAIR.
DTDB [30]. We create an evaluation set by using five se-
quences of length 16 from each test video resulting in be-
tween 90 and 385 test sequences depending on the texture.
Based on these sequences, the FVD, DTFVD, LPIPS, and
FID are computed. This evaluation procedure is the same
for each texture. We train one model for AL [21] as well
as for our approach on each texture. For diversity, we again
generate five future progressions for each sequence of the
evaluation set and use the same procedure described for
BAIR.

C.3. Dynamic Texture FVD (DTFVD)

In Sec. 4.3 of our main paper, we introduced a ded-
icated FVD metric for the domain of dynamics textures,
the Dynamic Texture Fréchet Video Distance (DTFVD).
To this end, we trained a network on DTDB [30] for the
task of dynamic texture classification. The motivation be-
hind introducing DTFVD is to provide an additional metric
which is sensitive to the types of appearances and dynam-
ics encapsulated by dynamic textures, rather than human
action-related motions, as captured by FVD. For the DT-
FVD network, we use the same architecture as used for the
FVD model, i.e., an I3D network [73]. At convergence (cf.
Fig. 11), the DTFVD model achieved 81.7% training accu-
racy, while achieving 84.0% test accuracy, thus indicating
that the model yields well generalizing features capturing
the appearance and dynamics in DTDB. A similar conclu-
sion can be drawn by looking at the confusion matrix in
Fig. 10 computed for the test set of DTDB, which shows a
dominant diagonal structure. Note, we used dropout with a
probability of p = 0.5 to avoid overfitting, which explains
why the classification performance is higher on the test set
than on the training set. To evaluate sequences with lengths
of 16 as well as 32 we train two separate networks.
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Figure 10. Confusion matrix on the test set of DTDB [30] computed from our DTFVD backbone model.

Figure 11. Training and validation loss while optimizing our DTFVD backbone network on a sequence length of 32. Similar accuracy on
both dataset splits indicate a well-generalizing model.
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