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Abstract

Understanding the dynamics of a physical scene involves
reasoning about the diverse ways it can potentially change,
especially as a result of local interactions. We present the
Flow Poke Transformer (FPT), a novel framework for di-
rectly predicting the distribution of local motion, conditioned
on sparse interactions termed “pokes”. Unlike traditional
methods that typically only enable dense sampling of a single
realization of scene dynamics, FPT provides an interpretable
directly accessible representation of multi-modal scene mo-
tion, its dependency on physical interactions and the inherent
uncertainties of scene dynamics.

We also evaluate our model on several downstream tasks
to enable comparisons with prior methods and highlight the
flexibility of our approach. On dense face motion generation,
our generic pre-trained model surpasses specialized base-
lines. FPT can be fine-tuned in strongly out-of-distribution
tasks such as synthetic datasets to enable significant improve-
ments over in-domain methods in articulated object motion
estimation. Additionally, predicting explicit motion distri-
butions directly enables our method to achieve competitive
performance on tasks like moving part segmentation from
pokes which further demonstrates the versatility of our FPT.
Code and models are publicly available at
compvis.github.io/flow-poke-transformer.

1. Introduction
A key feat of human visual intelligence is motion under-
standing, our ability to understand and predict the various
ways the world around us could potentially change at a given
point in time (see Fig. 1). Our cortex is not creating a men-
tal video, focusing on how the colors of individual pixels
change. Rather, we are constantly making predictions about
the various ways individual objects or parts thereof could
potentially move and deform [30]. We do not perceive the
future as an unambiguously deterministic sequence of events
but as a vast space of possibilities.
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Figure 1. What If: Our Flow Poke Transformer directly models the
uncertainty of the world by predicting distributions of how objects
(×) may move conditioned on some input movements (pokes, →).
We see that whether the hand (below paw) or the paw (above hand)
moves downwards directly influences the other’s movement. Left:
the paw pushing the hand down, will force the hand downwards,
resulting in a unimodal distribution. Right: the hand moving down
results in two modes, the paw following along or staying put.

It is natural to focus selectively on parts of a scene, infer
how they might evolve, and reason about the underlying
physical properties and interactions that drive change. This
selective, probabilistic, and multimodal reasoning is rooted
in the perceived inherent stochastic nature of the world. It is
governed by the stochastic physical properties of complex
systems and further compounded by the presence of agents
with a complex, inaccessible internal state, lead by free will
or other, from the outside often unapproachable causes.

This inherent uncertainty makes dense, deterministic pre-
dictions of future motion both impractical and ill-posed to
represent real-world dynamics. The prediction of pixel-
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perfect and long-term sequences [28] requires models to
commit to one trajectory and, in so doing, ignore the rich
multimodality of real-world outcomes. At best, such a pre-
diction biases the scenario towards a single plausible future;
at worst, it produces photorealistic frames that show limited
understanding of physical processes, interactions, and con-
straints. In many situations, like autonomous agent systems,
robotics, and automated planning, the ability to predict and
process multiple possible outcomes of a given situation is
more valuable than the naive assumption that events play out
according to a single trajectory.

To address these issues, we propose a framework for rep-
resenting the distribution of possible motions of parts of a
scene. To control the degree of uncertainty, a human observer
can interact with or perturb a scene with local “pokes”, by
nudging an object or applying a force. By repeating similar
interactions, the multimodal nature of potential outcomes can
be observed. Similarly, we allow conditioning the motion
distribution on such sparse, localized pokes. Compared to
traditional dense approaches, our method operates at a higher
level of abstraction, predicting localized distributions of mo-
tion rather than committing to a single outcome. This ap-
proach aligns more closely with real-world dynamics where
uncertainty and multimodality are intrinsic and actionable
insights often emerge from reasoning about sparse, local
changes rather than exhaustive dense predictions. These
include aspects like the inherent interpretability of explic-
itly predicted distributions, such as identifying modes and
quantifying uncertainty directly.

By avoiding dense (video) prediction, our model re-
frames motion prediction as a problem of capturing po-
tential dynamics, directly predicting motion distributions.
For instance, a poke applied to an unstable stack of blocks
might cause it to topple in multiple ways, remain stable, or
shift slightly without collapsing. We capture this variability,
avoiding the pitfalls of dense video models that have to com-
mit to one specific sample in the set of potential outcomes.
This also addresses the impracticality of dense or long-term
predictions, where compounding uncertainty renders dense
outputs increasingly arbitrary.

Applications of our proposed model include (sparse) in-
teractive simulation, where pokes guide scene exploration
and the multimodal distributions of possible motions are
directly captured, moving part segmentation, but also classic
sampling of dense motion predictions. As opposed to optical
flow estimation and tracking, where the future is given via
a future frame, from which motion is estimated, we predict
what future motion might be from only a single frame.

Overall, we present a step toward a more efficient, flexible,
and detailed understanding of scene dynamics. We focus on
the vast distribution of what could happen—optionally con-
ditioned on sparse interactions instead of rendering specific
futures. Our framework is not only efficient and scalable,

but also conceptually aligned with the inherent uncertainties
our human perception and reasoning is facing when dealing
with our changing environment.
Our main contributions are as follows:
• Multimodal Distribution Prediction: we directly predict

full distributions of potential motion instead of just en-
abling sampling from them, providing increased flexibility
in applications over previous approaches, such as directly
estimating uncertainties.

• Sparse Kinematics Modeling: our method reasons about
sparse, local motion distributions across the scene. This
balances efficiency with expressive power by focusing
computational resources where they matter most.

• Generalizability: our method can learn a generic motion
understanding from unstructured web videos, generalizing
effectively to diverse, open-world data.

• Efficiency: our approach of sparsely modeling interactions
enables sparse predictions with our method in 25ms and
throughputs of more than 160k parallel predictions per
second on a single modern GPU which is promising for
real-time applications.

2. Related Work

Estimation of plausible motion for a given image or scene
has been approached in various ways over the years. What
makes this task particularly challenging is that it requires the
model to have a physical understanding of how objects move
in general, how they can be manipulated, and how they relate
to each other. Many approaches directly predict a video from
still images which makes it harder to access and leverage
the underlying motion understanding of the model. Other
approaches first predict a dense flow map which they use to
later warp the images. However, more complex scenes can
have multiple instantiations of realistic motion depending on
the given conditioning, which we aim to model directly. In
the following, we review various methods which have been
studied in the literature.

Motion-based Editing A field that has recently gained at-
tention is image editing using diffusion models by providing
a set of pokes that indicate how specific parts of the image
should move. [31] takes a GAN [13] generated image and
warps it using motion supervision based on user-provided
pokes. InstantDrag [36] on the other hand first predicts
dense optical flow using a GAN and uses that as condition-
ing for a diffusion model to generate the final warped image.

Similar approaches have been used in video editing
[5, 22, 45] that extend base models with ControlNets [54]
or LoRAs [15] to condition the model on the desired mo-
tion. The goal is then to move entire objects according to a
specific poke by selecting the object with a bounding box or
entity representation [46]. Unlike our method, this general
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direction neglects an understanding of physical and realis-
tic motion in exchange for precise adherence to the poke
guidance and realistic inpainting of occluded regions.

Motion Generation Various works learn to halluci-
nate motion for static images [2, 11, 24, 33, 35, 43].
MoVideo [24] and Motion-I2V [35] use diffusion models
to predict dense flow sequences given a start frame and use
them to synthesize videos. Motion-I2V specifically allows
conditioning on sparse movement information using “mo-
tion drags”, similar to pokes, which is an improvement upon
DragNUWA [50] that directly synthesizes dense RGB video
from drags. The latter makes the actual motion prediction
substantially less accessible because it needs to be estimated
with an additional model like RAFT [40] or COTR [17], a
property also shared by other methods [19, 20]. [43] predicts
discrete bins of optical flow for static images with a classifi-
cation loss. This enables them to model multiple flow fields
for a single image. Im2Flow [11] predicts a single realization
of continuous optical flow for an image and combines that
with the image to boost action classification performance.

Learning how objects move and behave together can also
be used as a general pretext task to build physical scene
understanding. [2] introduced the concept of pokes as sparse
motion conditioning to indicate how the poked object should
move and directly synthesize dense RGB videos on limited-
domain datasets. This is an unspecified problem as move-
ment information is only available for a small number of
poked pixels and the model needs to learn how the remainder
of the scene moves. DragAPart [20] and the follow-up work
PuppetMaster [19] focus on modeling the movement of indi-
vidual parts of objects for a closed-domain, synthetic dataset
(part-level motion). While these works focus on building
a more fine-grained physical understanding, they directly
predict the result of the poke(s) in RGB space. This makes
the underlying motion representation harder to access and
requires e.g. optical flow estimation between frames. Addi-
tionally, they do not provide any uncertainty estimation in
the form of an underlying motion distribution, but simply
render a single possible sample of the result space.

Other approaches focus on directly predicting a specific
physical representation of motion. Generative Image Dy-
namics [23] learns oscillatory dynamics as commonly found
in nature using Fourier-based motion representations. Phys-
Dreamer [56] and PhysGaussian [49] extend the work of
[23] from 2D to 3D scenes. While these approaches work
well in their limited domains, they lack the flexibility to
model the vast, often non-oscillatory motion space of the
real world and are thus limited in the amount of general
motion understanding they can obtain though training.

Generative Models in Computer Vision Generative mod-
els have recently become a cornerstone in computer vision,

as they allow modeling tasks through full conditional dis-
tributions p(y|x) instead of reducing predictions to single-
point estimates, such as the expectation E[y|x] often used in
discriminative models. Major paradigms include GANs [13],
diffusion models [14, 37], and autoregressive (AR) mod-
els [42]. GANs and diffusion models enable sampling from
the modeled distribution but provide limited direct insight
into its structure. Diffusion models, in particular, have
demonstrated scalability to general data distributions and
billions of parameters [32], whereas GANs are typically con-
strained to closed-set distributions. AR models, extensively
applied in NLP [42] and increasingly adopted for vision
tasks [3, 9, 51], directly model probability mass functions
(PMFs) for discrete distributions and scale well to hundreds
of billions of parameters [8]. However, the discrete nature
of PMFs limits their applicability to real-valued problems,
which are prevalent in vision tasks. Recent advances such
as GIVT [41] and [21] have extended AR transformers to
continuous-valued outputs while retaining the scalability of
AR transformer models [10]. Specifically, [21] employ a
diffusion model to sample from autoregressively predicted
feature vectors, while GIVT directly parameterizes distri-
butions as Gaussian Mixture Models (GMMs) with diag-
onal covariances, enabling direct access to the probability
density function (PDF) for downstream applications. Our
implementation builds upon the latter, while extending it to
non-diagonal covariances to enable accurate modeling of
motion distributions.

3. Method
3.1. Problem Setting
Given an image I, we aim to model the movement of all
visible points in the image and their interdependencies. To
this end, our goal is to model the conditional distribution
p(f(q)|P, I) of the movement f(·) ∈ R2 of arbitrary query
points q ∈ R2 in the image conditioned on a set of Np pokes
P = {(pi, f(pi))}

Np

i=1, each specifying the movement f(pi)
at locations pi ∈ R2. Explicit conditioning on movement
information given at specific points is crucial to enable the
exploration of interactions and controlling movement pre-
diction in the scene. Here, the movement f(·) of a point
describes its change in position from the current time t to a
future time t+∆t, also referred to as forward flow.

3.2. Flow Poke Transformer
To model the movement distribution pθ(f(q)|P, I), we use
a transformer-based architecture, denoted as pθ. Transform-
ers [42] are especially well-suited for this task, as they are
well-capable of working with sparse sequences due to token
interactions only being implemented via the attention mech-
anism. We show a high-level overview in Fig. 2. We view
each poke (pi, f(pi)) ∈ P and each query point qj ∈ Q as
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Figure 2. High-level Model Architecture Overview. Given an image I, a set of given pokes P (visualized as arrows →), and query
positions q (×), our model directly predicts an explicit distribution of the movement at each query position. The flow poke transformer
cross-attends to features from a jointly trained image encoder to incorporate visual information. Crucially, our architecture represents
movement at individual points q (enabling sparse & off-grid motion processing) and directly predicts continuous, multimodal output
distributions.

individual tokens. Each poke’s movement f(p) is encoded
at the input using a Fourier embedding, while query tokens
are set to a learned embedding. Positional encoding is imple-
mented using relative positional embeddings [38], allowing
positions to be set with arbitrary precision without needing
to conform to any grid. This is important, as it enables train-
ing the model with high-quality but sparse and off-grid flow
obtained via optical tracking. During self-attention, queries
only attend to themselves and pokes, not to other queries.
This enables evaluating the distribution pθ(f(q)|P, I) for
multiple queries qj in parallel, which is crucial for efficient
dense flow predictions. The image I is encoded separately
using a vision transformer, resulting in a set of spatial en-
coded image tokens E(I). The poke and query tokens then
cross-attend to the image tokens, with spatial information
again encoded using relative positional embeddings [38].

To obtain the movement distribution pθ(f(q)|P, I), a
projection head at the transformer’s output directly predicts
a Gaussian Mixture Model (GMM), enabling real-valued
distributional predictions following GIVT [41]. The dis-
tribution being directly accessible in this manner enables
a range of additional capabilities, such as directly captur-
ing multi-modal distributions in a single forward pass or
enabling the fine-grained quantification of uncertainty. Un-
like [41], we parametrize each component n using a full
covariance matrix Σ(n) ∈ R2×2 instead of a purely diagonal
one, greatly increasing the prediction’s degrees of freedom.
The positive semi-definiteness of the covariance matrix is
ensured by the model predicting a lower triangular matrix
L(n) ∈ R2×2 with a positive diagonal (by soft-clipping to a
lower threshold), from which the covariance matrix is com-
puted as Σ(n) = L(n)(L(n))⊤. Overall, this results in the
predicted N -component GMM

pθ =
∑N

n=1 π
(n) · N (µ(n),Σ(n)), (1)

with component mixture coefficients π(n) and means µ(n).

A specific challenge with learning motion understand-
ing from open-world web videos is that camera movement
can dominate the overall motion distribution of a frame.
Only training on videos with static cameras is not viable,
as it would limit potential training data too much. We ad-
dress this by replacing the typical normalization layers in the
transformer with adaptive normalization layers [16], using
which we condition the model on whether the camera is
static, which we detect by whether a significant fraction of
the scene’s content is static. This allows us to learn motion
prediction on general videos.

Training Objective We directly train our model to min-
imize the negative log-likelihood (NLL) of a ground truth
flow f(q) of the random query point q, conditioned on a
random set of flow pokes P

L(f(q),P, I; θ) = − log pθ(f(q)|P, I)

=−log
(∑N

n=1π
(n)N (f(q)|µ(n)

θ (P, I),Σ(n)
θ (P, I))

)
. (2)

Specifically, we compute the loss for image I condi-
tioned on random sets of pokes P(i) of length |P(0)| =
0, . . . , |P(Np)| = Np. Predicting the flow distribution at
Nq different random query positions q per set of pokes.
To enable efficient training, we introduce a variation of
teacher forcing [39], typically used to train autoregressive
transformers [42]. We select the set of random pokes such
that |P(0)| ⊂ |P(1)| ⊂ . . . ⊂ |P(Np)|. We then use a
causal attention mask on the poke tokens and let the queries
for each set of pokes individually attend to all the pokes
in their respective set. We call the resulting attention pat-
tern query-causal attention (see Fig. A for visualizations).
As opposed to training with independent sets of pokes and
full self-attention for all sets of pokes and queries, this re-
duces the computational complexity from O(N2

p ·N2
q ) to

O(N2
p +Np ·Nq) for the same number of trained predictions.
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Since Np can be large during training, this substantially im-
proves performance and enables efficient training.

3.3. Downstream Applications
Our method’s primary goal is to enable efficient and inter-
pretable modeling of multimodal movement distributions of
different parts in scenes. We achieve this by modeling the
conditional distribution of the movement of query points q
in the image I given the movement of any number of pokes
P to condition on. As our model directly makes probability
density functions for each query’s movement accessible and
captures its multi-modality (c.f., Fig. 3), the distribution of
potential movements can be directly interpreted. Besides
modeling this relation of movement of different parts in a
scene, this also enables other direct and indirect downstream
tasks and applications, which we describe in this section.

Dense Motion Prediction The conditional distribution
our method learns to model can also be used to predict a
dense grid of queries Q. This prediction can be done both
purely conditioned on the reference image or given refer-
ence pokes P . This motion can be obtained by predicting
the pointwise flow distributions in parallel or via autore-
gressive sampling. To sample from the joint distribution
p(f(Q)|P, I) that models the precise interactions between
all points in the image, we employ autoregressive sampling.
Iteratively, we predict the flow distribution for a random
query qi ∈ Q, sample a flow instance from the conditional
distribution f(qi) ∼ pθ(f(qi)|P, I), and add the query to
the set of pokes P ← P ∪ {qi}. This results in individual
coherent samples Fsample ∼ pθ(f(Q)|P, I) from the distribu-
tion of possible dense flows. We show qualitative examples
of sampled dense flow in Fig. 6. For parallel sampling, we
compute the mean dense flow Fmean = E [f(Q)|P, I; θ] in
a pointwise manner for all queries qi ∈ Q in parallel. This
provides efficient, high-quality flow predictions (see, e.g.,
appendix Fig. F), but also results in mode averaging.

Segmenting Moving Parts Segmenting parts that move
together is a task introduced in [20] and is useful for various
applications such as predicting affordances. Given a poke
(p, f(p)), the aim is to segment the image into parts that
would move in response to it. Unlike [20], we do not need
to rely on involved methods for extracting and comparing
internal feature activations of our model for this task. In-
stead, our model enables direct quantification of the effect
a movement f(p) of a point p has on another point q by
measuring the relative entropy between the conditional and
unconditional distribution, i.e., how much conditioning on p
changes the movement distribution of q. This is done using
the Kullback-Leibler (KL) divergence

DKL(pθ(f(q)|(p, f(p)), I) ∥ pθ(f(q)|I)). (3)

Specifically, if the movements of q and p are independent,
the conditional distribution p(f(q)|(p, f(p)), I) is equal to
the marginal distribution p(f(q)|I)), and thus, the KL di-
vergence in Eq. (3) is zero. Otherwise, it quantifies the
change in movement distribution, and, thus, the motion inter-
dependencies of different parts of the scene. We efficiently
approximate the KL divergence using the matched bound
approximation [12]. This can then be computed over all
points q in the image I in parallel and directly quantifies the
effect the given movement of p has on each point q.

4. Experiments

4.1. Dataset and Implementation Details

For general pretraining, we train on a random 3.8M video
clip subset of WebVid [1]. The wide variety of concepts
present in WebVid enables our model to learn a general rep-
resentation for motion instead of being limited to a specific
domain, such as face-only videos. We train our model with
flow from optical tracks using CoTracker3 [18] for a random
48-frame interval from each clip using a uniform 482 grid
from the respective start frames.

The image encoder and the poke transformer are ViT-
Base transformers [7] for a total parameter count of 220M.
We use RoPE [4, 38] both for self-attention between flow
tokens and for cross-attention to image tokens. We initialize
the image encoder with DINOv2-R [6, 29] to make training
more efficient but keep the weights unlocked. Jointly training
the full model is essential, as DINOv2 does not have good
instance segmentation capabilities (see Sec. B for additional
details), which are essential for our task. We pass images to
the vision encoder at a resolution of 4482 to obtain a 322 grid
of visual embedding tokens. The model is trained in bfloat16
precision for 800k steps using AdamW [26] with a learning
rate of 5e-5, at a global batch size of 32 images, which is
increased to 128 after 250k steps. Per image, we sample sets
of random pokes of sizes 0, 1, . . . , 128, and compute losses
on Nq = 15 random query points per set of pokes. This
results in a global batch size of 61,440 (245,760) queries.
Overall, training this model took 7 days on 2 Nvidia H200s.
We also train a second model on a dataset of 5M open-set
video clips we collected, with optical tracks obtained using
TAPNext [57]. Here, we simplify the training setup to use a
batch size of 128 across the whole training, and add a cosine
decay [25] for the learning rate after an initial warmup. A
further optimized training setup allows us to train this model
to 1M steps in 24h on 8 Nvidia H200s. We provide additional
details and ablations in appendix Secs. A and B, and explore
the potential for extension to 3D motion in Sec. C.

Without inference optimizations such as quantization or
8-bit inference, a single conditional movement distribution
prediction for query in an image can be obtained in less than
25ms of delay on a single H200. This makes our model
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Figure 3. Multimodal Motion Distribution Prediction. We con-
dition on one or multiple pokes (→) and then query the motion
distribution of specific points (×). Our model’s predictions capture
the multi-modal nature of motion and exhibit understanding of in-
teractions, such as only lifting the cup by its handle not necessarily
causing the whole cup to move upwards, while grabbing it at stable
points does. It also demonstrates prior understanding from scenes,
such as a car in an intersection being more likely to move forwards
than backward and cars in traffic likely moving together.

applicable for real-time applications. Throughput (with par-
allel predictions) is about 160k predictions per second per
image, thanks to our query-causal attention implementation.

We generally evaluate predicted motion at a resolution of
642 unless specified otherwise. We primarily rely on end-
point error EPE = ∥f̂(q)− fGT(q)∥2, which measures the
difference between the true motion fGT(q) and the predicted
motion f̂(q). Additionally, we also compute the percentage
of correct keypoints PCK = E[∥f̂(q) − fGT(q)∥2 < α],
with α = 1px unless specified otherwise.

4.2. Evaluation of FPT’s Key Abilities
FPT’s Ability to Predict Movement Distributions We
observe our model’s predicted distributions pθ(f(q)|P, I)
given an image I of a scene and conditioned on a sparse
set of pokes P in Fig. 3 (see appendix Fig. E for additional
samples). Qualitatively, our model exhibits an understanding
of physical phenomena and interactions, predicting realistic
movement distributions for the given pokes in the context of
the respective scenes. Most importantly, it captures the multi-
modality of potential movements in different circumstances
and their variability/uncertainty. Our approach is trained in
an open-world setting, being not limited to individual object
categories, but, nevertheless, captures fine-grained details of
specific objects’ potential motion.

One can also draw samples from the joint distribution
of movement of the whole scene pθ(f(Q)|P, I) by autore-
gressive sampling. We show examples of such unconditional

motion generations in Fig. 6. They successfully show diverse
but realistic global scene motion.
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Figure 4. Predicted Mode Analysis. Values are computed at a
resolution of 642. (a) Diversity of predicted modes is high, with
mode variation covering a large fraction of poke magnitude. (b)
One mode typically has a substantially higher confidence than
others, which increases with given poke count. The mode closest to
the ground truth consistently has a higher-than-average confidence.
(c) More confident modes are more accurate as measured by PCK.

FPT predicts meaningful multimodal motion distribu-
tions. One important property that differentiates FPT from
common motion modeling approaches is that it directly pre-
dicts the multimodality of possible future motions. For these
multimodal predictions to be valuable, they should cover
the diverse modes of possible motion and have meaningful
predicted confidences π(n). We analyze these properties in
Fig. 4. Generally, we find the modes to be highly diverse
(Fig. 4a, cf. Figs. 3 and E), with them covering substantially
different movements. As expected, the multimodal predic-
tions reduce to primarily unimodal predictions when enough
conditioning information is available to reduce the stochastic
uncertainty of the future and discern one clear correct mode
(Fig. 4b). Importantly, the confidence of the mode closest to
the ground truth motion is consistently substantially higher
than the average. This indicates that the model’s confidence
predictions are meaningful. Similarly, analyzing the modes’
accuracy (Fig. 4c) shows that the model assigns higher con-
fidences to modes more likely to be correct. Still, secondary
and tertiary predicted modes are also meaningful, as indi-
cated by the accuracy of the mode closest to the ground truth
exceeding that of the most confident one.

FPT’s predicted distributions accurately model uncer-
tainty. We evaluate the predictive quality of our model’s
predicted uncertainty w.r.t. true prediction error in Fig. 5.
Specifically, we investigate the relation between the pre-
dicted distribution’s standard deviation Std[f(q)|P, I; θ]
and the motion estimation error as measured with the end-
point error (EPE). We find that the predicted motion’s error
strongly correlates to the predicted uncertainty. This capabil-
ity is independent of the approach to derive the single motion
prediction from the predicted distribution. Sampling from
the predicted distribution (Pearson ρ=0.66), using its mean
(ρ=0.64), or using the most confident mode (ρ=0.62) all
lead to high predictive accuracy of the true prediction error
compared to the ground truth.
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Method Trained On
1 Poke 2 Pokes 5 Pokes 10 Pokes 100 Pokes

EPE ↓ PCK ↑ LPIPS ↓ EPE ↓ PCK ↑ LPIPS ↓ EPE ↓ PCK ↑ LPIPS ↓ EPE ↓ PCK ↑ LPIPS ↓ EPE ↓ PCK ↑ LPIPS ↓

InstantDrag [36] Faces 9.24 0.193 0.18 9.12 0.196 0.17 8.82 0.197 0.17 8.39 0.198 0.16 7.29 0.212 0.15
Motion-I2V [35] Generic (WebVid-10M, Zero-Shot) 29.08 0.029 0.35 27.40 0.031 0.34 24.22 0.030 0.32 20.90 0.048 0.30 n/a n/a n/a

Ours Generic (WebVid-3.8M, Zero-Shot) 7.64 0.150 0.16 6.87 0.154 0.15 5.32 0.167 0.13 4.20 0.183 0.12 2.51 0.264 0.10
Generic (Open Set-5M, Zero-Shot) 7.99 0.150 0.17 7.02 0.154 0.16 5.50 0.158 0.14 4.17 0.182 0.12 2.44 0.285 0.10

Table 1. Face Motion Generation Evaluation. We evaluate the accuracy of predicted motion on TalkingHead-1KH [44] given a starting
frame and one or more pokes (partially) defining the head movement. Our method performs substantially better in a zero-shot comparison
to Motion-I2V, which was also trained in a generic setting. Compared to InstantDrag, which was trained for specifically this setting, our
method achieves a substantially better endpoint error (EPE) but slightly worse PCK for low poke counts, highlighting our model’s capability
to perform competitively with purpose-trained methods while being generic. It can also make more efficient use of the available information,
achieving greater accuracy gains from additional pokes compared to other methods. When using the predicted motions to warp the source
image, our method consistently outperforms others.
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Figure 5. Uncertainty Calibration. We find that the motion
prediction error measured by EPE strongly correlates with the
predicted uncertainty (Pearson ρ=0.64). This relationship holds
for low & high numbers of given pokes.

Input Image Unconditional Motion Samples

Figure 6. Unconditional AR Motion Sampling. We show samples
of generated flow without prior motion conditioning on pokes. Our
model can generate a wide variety of realistic motions.

4.3. Comparisons on Motion Prediction
To enable quantitative comparisons of our model’s motion
understanding with existing methods, we evaluate on pre-
dicting dense flow from sparse flow pokes, given a starting
frame. We compare against baseline methods in the setting
they have been trained on to enable fair comparisons. To eval-
uate against DragAPart [20] and PuppetMaster [19], which
only generate images/videos based on drags, we extract flow
from the source to the generated image using RAFT [40].

Face Motion Estimation We compare against Instant-
Drag [36], which was trained on CelebV-Text [52] in their
evaluation setting – poke-conditioned motion prediction on
aligned faces on TalkingHead-1KH [44]. The qualitative

Input
with Pokes

Ours InstantDrag [36]

Flow Warped Flow Warped

Figure 7. Fine-grained Face Motion Control. We show fine-
grained zero-shot poking results on faces and compare against
InstantDrag [36], which was trained for this task. We further visual-
ize the predicted motion as warps using I-D’s face warping model.

results (see Fig. 7) show that our model tends to predict
more accurate and localized motion. This can also be ob-
served when visualizing the motion by warping the image.
For quantitative evaluations, we extract chunks of length
0.8s (following [36]) and use CoTracker3 [18] at a grid size
of 1282 to obtain the target motion from the start to the
end frame. Then, we condition on N ∈ {1, 2, 5, 10, 100}
pokes P , where the first poke is chosen to be the one with
the largest flow magnitude, and the others are sampled ran-
domly, and compare the dense predicted motion to the target
downsampled by a factor of two. We also compare quantita-
tively with [35], which was trained generically. We compare
favorably to both methods in EPE independent of the number
of given pokes, indicating further that our predicted flow is
more precise (Tab. 1). The PCK is slightly worse than the
non-generically trained InstantDrag for low poke counts but
catches up with more conditioning. When using the respec-
tive method’s generated motion to perform image warping
using InstantDrag’s warping stage, our method consistently
outperforms both others, as measured by the LPIPS [55]
distance to the ground truth images.

Articulated Objects DragAPart [20] and PuppetMas-
ter [19] were explicitly trained on part-level object motion
on a synthetic dataset, Drag-A-Move [20] (DAM). To en-
able comparisons with them, we evaluate on the test set of
DAM, which contains synthetic images of furniture with
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Method Trained On
(a) Motion Est. (b) Moving Part Segm.

EPE ↓ PCK ↑ mIoU ↑
Motion-I2V [35] Generic (Zero-Shot) 33.27 0.043 0.073
DragAPart [20] Objects (DAM) 9.69 0.514 0.273†

PuppetMaster [19] Objects (DAM + OAHQ) 9.62 0.472 0.112
Ours Generic (WV, Zero-Shot) 12.74 0.191 0.287
Ours (fine-tuned) Generic→ DAM 3.57 0.834 0.572

†taken from original publication, our evaluation yields 0.228.

Table 2. Articulated Object Motion Estimation. We compare
motion (flow) estimation (a) and moving part segmentation per-
formance (b) on Drag-A-Move [20] (DAM). On zero-shot motion
estimation, our model substantially outperforms the other zero-
shot method M-I2V, while not being much worse than specifically
trained methods. When adapted, our method significantly outper-
forms previous approaches. In moving part segmentation, even our
generic model outperforms other, in-domain models.

one or more pokes P that define the movement of one or
more articulated parts of that object. It also provides ground
truth dense flow at a resolution of 5122, which we compare
against. As DAM is significantly dissimilar from our train
set, we evaluate our model both in a zero-shot and fine-
tuned setting. For the fine-tuned setting, we fine-tune our
model on DAM for 30k steps at a batch size of 128 with
an exponentially decaying learning rate of 5e-7 that halves
every 10k steps. Our quantitative evaluation (see Tab. 2, for
additional qualitative samples see appendix Fig. D) shows
that, in a zero-shot setting, our model’s predicted motion is
substantially more accurate than Motion-I2V [35] but less
accurate than the specifically trained DragAPart and Pup-
petMaster. This demonstrates that our model generalizes to
out-of-distribution data comparatively well, but, expectedly,
falls short of models explicitly trained for this OOD domain.
Once fine-tuned, our model outperforms even the purpose-
made DragAPart and PuppetMaster by a wide margin. We
also show qualitative examples in Fig. D. These find Motion-
I2V to hallucinate substantial motion independently from
the given pokes and struggle with matching the precise flow
direction and magnitude for the given pokes. The extracted
flow from DragAPart also seems to face struggles in complex
multi-poke situations, which our model handles better.

4.4. Segmenting Moving Parts
We perform moving part segmentation with our method
by thresholding the KL divergence between the pointwise
unconditional motion distribution and the pointwise mo-
tion distribution conditioned on a specific poke (Eq. (3)).
We show qualitative results in Fig. 8 and compare quanti-
tatively against other methods, similarly thresholding the
flow magnitude in Tab. 2b. Here, we find that our method,
especially when finetuned in-domain, outperforms DragA-
Part [20], which introduced this benchmark, and the other
methods by a wide margin. A large part of this gain can be
attributed to our divergence-based score, which leverages
FPT’s unique property of directly predicting distributions.
Without it, our method achieves an mIoU of 0.415 – still

Input
with Poke

Moving Part Segmentation Input
with Poke

Moving Part Segmentation

DragAPart Ours DragAPart Ours

(a) We directly replicate Fig. 7 from DragAPart [20] with our method. Our
method provides spatially continuous predictions and makes fewer critical
mistakes like segmenting the furniture body with the drawer (top right).

Input Prediction Input Prediction Input Prediction

(b) Open-set moving part dependency visualization. The degree to which
the movement of each part is influenced by the poke (→) is visualized as a
heatmap, where brighter color means a higher degree of influence.

Figure 8. Segmenting Moving Parts. We show qualitative results
for moving part segmentation, as introduced in [20], both on the
Drag-A-Move dataset (a) and in a generic, open-set setting (b).

Input Prediction Input Prediction

Figure 9. Common Failure Cases. Our model, generically pre-
trained on primarily realistic videos, does not generalize well to
cartoons, causing parts of the background to be moved together
with objects. Additionally, our model sometimes, but not consis-
tently, jointly predicts the movement of shadows together with
objects, which can be problematic for downstream use cases.

outperforming the previous state-of-the-art by a wide margin,
but less so. Our method is also robust to threshold choice –
halving/doubling it leads to mIoUs of 0.54/0.52 respectively.

5. Conclusion

We introduce the Flow Poke Transformer (FPT), a novel
framework for motion understanding that captures real-world
dynamics’ multi-modal and stochastic nature through inter-
pretable distributions of local motion, conditioned on tar-
geted interactions (pokes). Contrary to previous motion
prediction approaches, FPT directly models the probabilistic
distribution of possible outcomes, providing insights into the
effects of physical interactions and inherent uncertainties.

Our evaluations demonstrate FPT’s versatility across dif-
ferent domains and its generalization capabilities. Despite
being designed and trained for sparse, general-purpose mo-
tion understanding, it also offers competitive performance in
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established tasks such as dense motion generation on faces
or articulated objects. Importantly, while valuable for com-
parison, these evaluations do not fully reflect our method’s
primary strength – its ability to provide directly interpretable
and useable predictions of motion distributions in interactive
environments, bridging the gap between physical plausibility
and efficiency. Furthermore, capabilities such as moving
part segmentation directly emerge from our method’s de-
sign. Overall, these results show our method’s strength as a
versatile, interpretable, general-purpose motion model. We
envision this work as a foundation for more probabilistic,
generalizable, and actionable approaches to motion under-
standing, paving the way for deeper insights into complex
physical dynamics and future advancements in handling am-
biguous and extreme out-of-distribution scenarios (Fig. 9).
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A. Implementation Details

The hyperparameters for the base model used for all evalu-
ation and qualitative examples are reported in Tab. B. We
train the WebVid model for a total of 800k steps with a
learning rate of 5.0×10−5 using the AdamW [26] optimizer
and a linear warmup of 5000 steps. The first 250k steps are
trained with a batch size of 32; for the remainder, we set
the batch size to 128. For our second model, keep the batch
size constant and significantly increase warmup time. We
also add a cosine LR decay and increase training time to
1M steps. Training time differences are due to an improved
trainer setup from the first to the second model.

As described in Sec. 4.1, we randomly sample flow pokes
and their corresponding positions from the given trajectories.
We enforce that all flow values are in [−1, 1] by applying a
tanh mapping and obtain a sinusoidal embedding for the x
and y components of the flow. We then find the correspond-
ing image features using the pokes positions and concatenate
them with the flow features and local image features ex-
tracted by the image feature extractor E(I). Finally, we
project them using a mapping network. These embeddings
are then combined with query tokens. The query tokens
represent the locations in the image for which we want to
predict a flow distribution and are realized by a learnable
token and the corresponding positional encoding.

The flow pokes and query tokens are fed to the trans-
former, which is 12 blocks deep and has a width of 768.
The self-attention uses our query-causal attention mask as
introduced in Sec. 3.2. We visualize it in Fig. A. In the
cross-attention, the pokes and queries attend to the image
features, enabling them to learn a global understanding of
the scene. In both attention mechanisms, we use 2D Axial
RoPE [4, 38] to model the spatial relationships of tokens.
The FNNs expand the internal feature dimension by a factor
of three, use SwiGLU [34] as an activation function, and
are conditioned on whether or not the camera is static using
AdaRMSNorms. On the output, we observe that directly
using the output of the transformer for GMM parameter pre-
diction sometimes produces unreasonable distributions and
thus bad performance. Therefore, we use a simple MLP to
project the transformer’s output, alleviating that problem.
For further details, we refer to our reference implementa-
tion1, which contains extensive further comments in context.

Whether the camera is static or not is detected using a
simple heuristic: we consider it to be static if a significant
fraction of the scene’s content is static. This information can
be directly derived from the training tracks. Specifically, we
find that considering a camera static once 40% of the frame
move by at most 3px (at our training resolution of 4482)
works well on our training data. For the second training, we
use 1% of the frame side length as the threshold instead.

1https://github.com/CompVis/flow-poke-transformer
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Figure A. Query-Causal Attention Pattern Visualization. We
show the resulting attention patterns for our query-causal attention
for different numbers of queries per poke count. We put poke
tokens first, followed by query tokens. (a) In the simplest setting,
with one query per set of pokes, there is one query token per set
of pokes, with each query token attending to one more poke token
than its predecessor. (b) For Nq > 1, the poke attention does not
change, but there are multiple query tokens per poke set. Here,
even query tokens for the same poke set do not attend to each other
to enable parallel evaluation during inference.

Parameter Value

Dataset WebVid [1] Subset Open-Set Videos
Number of clips 3.8M 5M

Batch size 32→128 128
Optimizer AdamW [26] AdamW [26]
Peak learning rate 5.0× 10−5 5.0× 10−5

Learning rate schedule constant cosine decay to 10−8

Betas (0.9, 0.99) (0.9, 0.99)
Warm-up steps 5k 100k
Total Steps 800k 1M
Precision bfloat16 bfloat16
Total Parameters 230M 230M

GPUs 2 Nvidia H200 8 Nvidia H200
Training Time 7 days 1 day

Tracker CoTracker3 [18] TAPNext [57]
Tracker position seeding 48× 48 grid 1024 random
Flow scale [−1, 1] [−1, 1]
Image size 448× 448 448× 448
Mixtures 4 4
Covariance Full Full
Given pokes 128 128
Query factor 15 15

Depth 12 12
SA width 768 768
CA width 768 768
Normalization RMSNorm [53] RMSNorm [53]
FFN expand factor 3 3
Activation SwiGLU [34] SwiGLU [34]
Positional encoding 2D Axial RoPE [4, 38] 2D Axial RoPE [4, 38]
Static scene conditioning Adaptive Norm [16] Adaptive Norm [16]

Table B. Hyperparameters for our main model across both datasets.
Ablation models use the same parameters as the first one, but only
train for 250k steps.
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Method Trained On EPE@1 ↓ EPE@2 ↓ EPE@5 ↓ EPE@10 ↓ EPE@100 ↓
InstantDrag [36] Faces 9.24 9.12 8.82 8.39 7.29
Motion-I2V [35] Generic (Zero-Shot) 29.08 27.40 24.22 20.90 n/a
Ours (full training) Generic (Zero-Shot) 7.64 6.87 5.32 4.20 2.51

Vision Feature Extractor Initialization
Jointly Trained Pre-Trained (Ours) Generic (Zero-Shot) 8.08 6.96 5.38 3.99 2.33
Frozen Pre-Trained Generic (Zero-Shot) 8.30 7.22 5.44 3.78 2.22
Trained from Scratch Generic (Zero-Shot) 8.15 7.51 6.14 4.73 2.57

GMM Component Count
1 Component Generic (Zero-Shot) 7.60 6.87 5.42 4.18 2.59
2 Components Generic (Zero-Shot) 8.98 7.87 5.83 4.08 2.34
4 Components (Ours) Generic (Zero-Shot) 8.08 6.96 5.38 3.99 2.33
8 Components Generic (Zero-Shot) 8.23 7.19 5.57 4.01 2.29
16 Components Generic (Zero-Shot) 8.41 7.26 5.44 3.90 2.34

GMM Covariance Parametrization
Full Covariance, 4 Components (Ours) Generic (Zero-Shot) 8.08 6.96 5.38 3.99 2.33
Diagonal, 4 Components Generic (Zero-Shot) 8.13 7.09 5.40 3.98 2.24

Table A. Extension of Tab. 1 including our ablations. The experiment is identical to the original one. The ablation models have been trained
for 250k steps compared to 800k for the full training. EPE@N refers to the endpoint error given N pokes.

B. Ablations

We show an extended version of Tab. 1 that includes quan-
titative results for hyperparameter ablations, which were
used to motivate the choices mentioned in the main paper, in
Tab. A. All comparison models follow the original training
recipe but are only trained until 250k steps due to compute
constraints.

First, we ablate whether to initialize the vision encoder
with pre-trained weights and whether to continue training
them. We find that initializing with pre-trained weights gives
a performance boost in this setting. We hypothesize that, for
very long trainings, both versions might end up performing
similarly well. As noted in Sec. 4.1, freezing the feature
extractor when initializing with DINOv2 [29] empirically
results in a model with reduced instance segmentation ca-
pabilities compared to the unlocked version. We show a
qualitative example of this in Fig. B. This behavior can also
be observed in the quantitative evaluations, where, for low
poke counts, the jointly trained model performs better than
the one with a frozen feature extractor. At high poke counts,
instance segmentation capabilities likely become less rele-
vant, as the movement of all instances is likely already given
explicitly via the conditioning.

When ablating the number of GMM components, we find
that adding too many components reduces the model’s per-
formance when conditioned on low numbers of given pokes.
Only predicting a single component results in better quanti-
tative performance at low given poke counts, but, obviously
prevents the model from predicting multimodal distributions
(see, e.g., Figs. 1, 3 and E), omitting a central property of our
model. Parametrizing the covariance matrices as a pure diag-
onal matrix as done in GIVT [41] results in slightly reduced

Input
Prediction

(Frozen Vis. Enc.)
Prediction

(Jointly Trained)

Figure B. Jointly training the vision encoder is important. We
train a model with a frozen pretrained vision encoder. The model
struggles with instance-specificity, predicting the same movement
for the woman’s hand as it does for the man’s hand. When jointly
training the vision encoder with the flow poke transformer, the
man’s hand’s movement does not directly influence the woman’s
hand.

performance on average. Qualitatively, it also prevents an-
gled distributions that our model successfully uses to express
directional uncertainty (see, e.g., Fig. 1).

C. Extension to 3D Motion

In this paper, we evaluated the Flow Poke Transformer in
the two-dimensional setting, meaning that the model only
reasons in the image plane. However, the architecture itself
is not limited to this setting and can trivially be extended
to higher dimensions if desired. We show qualitative mo-
tion prediction results from such a version in Fig. C, where
the model also successfully predicts reasonable out-of-plane
motion in full 3D. This model was obtained by continued
training from a 2D FPT checkpoint with 3D trackers ob-
tained using SpatialTrackerV2 [47, 48] on a subset of Open-
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Input Prediction F|xy Prediction F|z

Figure C. 3D Motion Estimation. We show unconditional 3D
motion estimation samples from an FPT variant fine-tuned on 3D
track data. The in-plane motion prediction F|xy resembles that of
a 2D FPT model, while this version can also successfully predict
plausible out-of-plane motion F|z .

Vid1M [27]. The model is capable of predicting movement
towards and away from the camera without any pokes, as
shown by the near-static background and the clearly seg-
mented motion of the animals in all three dimensions. When
combining the predicted flow in Z-direction with a depth
estimation of the input image, it is possible to tell which
parts in the image will be occluded in the future.

D. Additional Qualitative Examples
For additional context for our quantitative results in Tab. 2,
we show visualizations of some samples from that experi-
ment in Fig. D. We also show additional qualitative examples
for and pointwise motion predictions in Fig. E and samples
for dense motion estimation in Fig. F.

Input Motion-I2V DragAPart PuppetMaster Ours Ground Truth

Figure D. Qualitative Results for Articulated Object Motion
Estimation. We compare on Drag-A-Move [20] with Motion-
I2V [35], DragAPart [20], and PuppetMaster [19]. Our model is
qualitatively more capable of capturing complex conditioning with
multiple different pokes than DAP and PM in this setup. Motion-
I2V often fails to accurately follow the conditioning locally.
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Input Image Overlayed Distribution Zoom Distribution Input Image Overlayed Distribution Zoom Distribution

(a) When the head of the giraffe is moving down, we get different flow distributions depending on how close the query is to the head. Since the head can
also move down without the neck following, we get distributions with more emphasis on no movement when the query is further away from the head (first
example). When the query gets really close to the head (second example), the likelihood of movement at the query also increases which can be seen in the
stronger bottom mode.

(b) The model accounts both for the possibility of the tower falling over with the brick’s movement and with it staying stationary. The likelihood of the tower
falling over depends on the velocity with which the brick is removed.

(c) Depending on which hand moves, the cup is predicted to be either stationary or potentially moving together with the hand holding it. Note that the case of
the cup not moving with the hand holding it is very improbable, as visualized by the arrow pointing to that mode having substantially less opacity.

(d) Depending on the height of the position queried on the tree, the magnitude of the predicted movement changes, reflecting typical intuition as to how a tree
moves.

(e) The model is capable of understanding the effect of rotational movements.

Figure E. Visualization of flow distribution for different pokes on the same image. The overlayed distribution visualizes the potential
movement in the overall images, with the opacity of arrows denoting how likely each mode is (the more likely a mode, the less transparent
the arrow).
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Input Image Flow Prediction Input Image Flow Prediction Input Image Flow Prediction

Figure F. Qualitative samples visualizing motion predictions inferred from a single image and (optionally) pokes.
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