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Abstract

Generating and representing human behavior are of ma-
jor importance for various computer vision applications.
Commonly, human video synthesis represents behavior as
sequences of postures while directly predicting their likely
progressions or merely changing the appearance of the de-
picted persons, thus not being able to exercise control over
their actual behavior during the synthesis process. In con-
trast, controlled behavior synthesis and transfer across indi-
viduals requires a deep understanding of body dynamics and
calls for a representation of behavior that is independent
of appearance and also of specific postures. In this work,
we present a model for human behavior synthesis which
learns a dedicated representation of human dynamics inde-
pendent of postures. Using this representation, we are able
to change the behavior of a person depicted in an arbitrary
posture, or to even directly transfer behavior observed in
a given video sequence. To this end, we propose a condi-
tional variational framework which explicitly disentangles
posture from behavior. We demonstrate the effectiveness of
our approach on this novel task, evaluating capturing, trans-
ferring, and sampling fine-grained, diverse behavior, both
quantitatively and qualitatively. Project page is available at
https://cutt.ly/5l7rXEp

1. Introduction

Understanding human appearance, posture and behav-
ior are key problems of computer vision with numerous
applications in autonomous driving [41, 43, 23], surveil-
lance [12, 55, 66], medical treatment [6, 59] and be-
yond. While there has been major progress on represen-
tation [65, 51] and - with the advent of deep generative mod-
els [34, 24] - synthesis [7, 30] and manipulation [20, 13, 17]
of posture and appearance, the understanding of representa-
tion and synthesis of behavior is an open problem.
Human motor behavior is defined by the distinct dynam-
ics of our limbs and the entire body. Take for example a
person raising their arm. This is fully determined by the
upward movement of the arm. Since the remaining body

*Indicates equal contribution.

posture is mostly unaffected, the behavior can be directly
performed independently of a particular initial body config-
uration such as a sitting or standing posture (cf. Fig. 1).
Moreover, rather complex behavior like running involves an
interplay between certain body limbs, e.g. arms swinging
synchronously with the movement of legs, and, thus, is natu-
rally limited to certain postures to start with. To nevertheless
enact such behavior from arbitrary starting poses, first a tran-
sition to fitting initial body configurations may be required -
for instance, a sitting person needs to stand up before being
able to walk. Finally, specific body features like size or build
do not affect the ability to perform a walking behavior.
While behavior is eventually instantiated as a sequence of
individual postures that can be observed in a video, this
would be a suboptimal representation: We want the overall
behavior to be the same, e.g. raising arm or walking, re-
gardless of the initial posture it starts with. Although we are
looking at different realizations it should still be represented
as being the same behavior. Consequently, understanding,
controlling, and synthesizing behavior calls for separate dis-
entangled representations of the characteristic behavior and
of individual (in particular the initial) posture. In contrast,
present work on human motion synthesis typically represents
behavior directly by means of the observed sequence of pos-
tures [3, 42, 69, 62]. Thus, as no explicit understanding and
representation of behavior is developed, synthesizing human
behavior has been limited to only changing person appear-
ance [62, 9, 61] or forecasting the most likely continuation
of the depicted posture sequence [3, 42, 69, 11]. However,
controlling such sequences, e.g. to re-enact a novel behavior
by an observed person, asks for a posture independent repre-
sentation which captures only the behavior dynamics to be
transferred. Moreover, instantiating the re-enacted behavior
requires combining these dynamics with the, potentially sig-
nificantly different, posture of the target person.
In this paper we propose a conditional variational generative
model for controlled human behavior synthesis which only
requires a collection of sequences without any class labels
provided. Our models learns to understand the characteristic
motor dynamics of behavior, which enables us to transfer
behavior between videos. We learn a dedicated representa-
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Figure 1. Our Approach for Behavior Transfer. Given a source sequence of human dynamics our model infers a behavior encoding which is
independent of posture. We can re-enact the behavior by combining it with an unrelated target posture and thus control the synthesis process.
The resulting sequence is combined with an appearance to synthesize a video sequence.

tion extracting these dynamics from pose sequences while
factorizing out posture information. To this end, we propose
an explicit disentanglement framework for behavior and pos-
ture based on an alternating optimization procedure while
simultaneously controlling the information flow through our
model. In particular, the explicit disentanglement allows
our model to re-enact extracted behavior from arbitrary tar-
get postures and, if needed, to infer required corresponding
transitions itself. Our experiments demonstrate qualitatively
and quantitatively that our model meaningfully transfers be-
havior between sequences and is also able to sample novel
and diverse behavior. Quantitative comparison against cur-
rent approaches for human motion synthesis confirms the
competitive performance of our approach.

2. Related Work
Static person rendering. Much work has been proposed
to alter certain characteristics of humans depicted in static
images like age, gender or body features [31, 33, 35, 57]
or synthesizing individual persons in different, unseen
poses [20, 19, 39, 13]. The latter task typically requires
for explicit disentanglement between certain factors of in-
terest, often depending on paired image data [19, 39, 26].
While these approaches work well factors in static images,
our work aims at transferring human behavior and, thus,
requires disentanglement of a temporal factor, which is is
significantly more complex.
Human video synthesis. Human video synthesis has been
addressed in multiple ways. Some approaches synthesize
videos directly in the pixel space [58, 2]. Due to the vast
complexity of this problem, most approaches are based on

mid-level representation of human shape, such as segmen-
tation masks [62, 22] or pose estimates [61, 9, 68, 18, 38].
Chan et al. [9] generate video sequences of dancing per-
sons by first learning correspondences between frames and
postures before adding appearance information. A simi-
lar sequence-to-sequence translation task is performed in
[62, 61, 36]. These works represent behavior directly on
instantiated pose sequences, thus lacking the ability to exer-
cise control. Our model understands and explicitly learns a
behavior representation which can be used to transfer char-
acteristic behavior dynamics between persons. Another line
of research is future human motion prediction based on an
initially observed posture sequence [14, 29, 21, 60]. Yuan et
al. [70, 69] extend the future motion prediction task using
multiple transformations on the latent space to increase the
diversity of predicted motions. Chiu et al. [11] propose a
hierarchical multi-scale RNN to learn dependencies between
individual postures. Martinez et al. [42] use residual RNN
architectures to directly model motion velocities. Milbich et
al. [46] synthesize behavior by arranging frames from dif-
ferent video sequences based on nearest neighbour retrieval
in a dedicated activity space. In contrast to our approach,
these methods can not control the predicted behavior but
only extrapolate the observed posture sequence.
Controlled behavior synthesis. Controlling the behavior
to be generated requires a considerable higher degree of un-
derstanding than unconditioned prediction or sequence trans-
lation. Recent works control mostly only in form of a small,
fixed set of predefined actions [22, 25]. Yang et al. [68]
condition the synthesis process on action labels. In contrast,
we require only a collection of unpaired video sequences and
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(a) (b)
Figure 2. Overview over model training (a) and inference (b). Each distribution is realized by a deep neural network. During training, the
first posture of x serves as conditioning xt (yellow). Note, that consequently xt is also part of the encoder input since we do not have
multiple training sequences x starting from the same posture xt available. In inference, i.e. after disentangling posture and behavior, we
transfer source behavior (green) to an arbitrary target posture (yellow) or synthesize novel behavior from the prior distribution which is
matched to qφ(zβ |x, xt) by a learned invertible transformation Tξ (red).

condition the synthesis process on a dedicated representation
of behavior independent of posture. DLow [69] splits pos-
ture into different sets of keypoints to vary the diversity of
predicted future movements for predefined body parts while
keeping the others close to the groundtruth future sequence
and, thus, cannot exercise detailed control. MT-VAE [67]
uses latent space arithmetics to enable transformations be-
tween different motions. However, transfer of more complex
behavior is limited since only linear arithmetics are consid-
ered which makes a strong assumption on the latent space
that typically cannot be met. In contrast, we learn a dedicated
representation of behavior disentangled from posture. Hence
our model naturally allows for recombination of behavior
and posture.
Action recognition Action recognition [8, 64] aims at clas-
sifying a predefined set of actions from a given video, poten-
tially based on intermediate representations such as 3D key-
points. Although our learned behavior representation is also
based on keypoints, we aim at capturing behavior dynamics
for detailed synthesis of full behavior. In contrast, action
recognition learns discriminative representations which only
focus on separating between action classes [56].

3. Approach

Our goal is to control and synthesize videos of human
behavior. Since powerful pose estimators [65, 51] are readily
available, pose sequences x = [x0, ..., xn], xi ∈ RK×3 are
directly used as a basis to represent the behavior observed
in video [62, 61, 9], e.g. for changing the depicted per-
son’s appearance or predicting likely sequence continuations.
While this representation is sufficient to perform the afore-
mentioned tasks, changing the posture sequence to re-enact
a different behavior asks for a deeper understanding. Thus,
behavior transfer requires separate representations modelling
the characteristic motor dynamics of behavior and individual

postures. We now present a generative model which extracts
and represents human behavior β from a source sequence
x independent of the instantiated postures. Given an ob-
served target posture xt, e.g. in another video, we can then
synthesize a re-enacted posture sequence and subsequently
translate it to the video domain.
Extracting behavior β from x into a representation zβ ∈ RD
and subsequently re-combining it with a target pose xt to in-
stantiate the behavior can be naturally formulated by means
of latent variable models such as encoder-decoder frame-
works. Such frameworks have been successfully applied for
predicting future postures based on x, i.e. directly extrapo-
lating the observed posture sequence [69, 60]. However, as
we seek to control the behavior to be generated, we require
the latent representation zβ to be disentangled from posture
information.

3.1. Synthesis using conditional generative models

Generative models are powerful frameworks which are
particularly suited for synthesis tasks. As we not only
aim to learn a representation for behavior, but also need
to extract it from our input sequences x, variational au-
toencoders (VAE) [34] are a natural choice. Such mod-
els approximate the true data distribution p(x, zβ) which
is assumed to follow the generative process p(x, zβ) =
p(x|zβ)p(zβ). To optimize the intractable marginal
log-likelihood Ep(x)[log pθ(x)] of the model distribu-
tion pθ(x, zβ), a variational posterior qφ(zβ |x) is intro-
duced allowing to maximize a lower bound L(pθ, qφ) ≤
Ep(x)[log p(x)] [34]. Now, since we want to transfer behav-
ior and condition it on arbitrary target postures, we condition
the generative process [54] additionally on xt, which modi-
fies the lower variational bound and its optimization to

max
θ,φ

L(pθ, qφ) := Eqφ(zβ |x,xt) [log pθ(x|zβ , xt)]

−DKL(qφ(zβ |x, xt)||p(zβ))
(1)
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where p(zβ) is the prior on the latent representation zβ which
is typically modelled as a standard Gaussian distribution
N (0, I). The first term of (1) can be considered to optimize
the synthesis quality of the generator pθ(x|zβ , xt) while the
second part regularizes the encoder qφ(zβ |x, xt) to match
the Gaussian prior.
Although our generator pθ has access to both zβ and the
conditioning posture xt, optimizing (1) will in general not
encourage our model to learn a factorization of posture in-
formation and the behavior representation zβ . Moreover, we
have no ground-truth provided for different behaviors start-
ing from the same target posture xt. Thus, we are only able
to train our model by choosing xt to be the first posture of x,
which aggravates the need for an explicit disentanglement
during the optimization process.

3.2. Disentangling posture from behavior

While explicit disentanglement between factors of varia-
tion has been studied in the domain of static images [44, 26,
39], disentangling complex temporal information, however,
is significantly still lacking. Existing works for static images
typically resort to supervision by exploiting pairs of data
samples sharing one factor while differing in the remaining
factors [44, 26], which allows for a natural disentanglement
signal. Without having similar supervision available, we
need to explicitly disentangle the posture information in x
from our latent behavior representation zβ . To this end, we
would ideally want to minimize the predictability of the in-
dividual postures in x given zβ . However, performing this
operation directly on basis of our generator pθ does not pre-
vent the erasure of body dynamics as well. Instead, we can
frame this task using an auxiliary generative model.
Let p̂ψ(x|zβ) be a second generative model aiming at gener-
ating x from our behavior representation zβ only, i.e. opti-
mizing the log-likelihood,

max
ψ

Eqφ(zβ |x,xt) [log p̂ψ(x|zβ)] . (2)

Solving this task requires p̂ψ(x|zβ) to represent posture
information which it has to be able to extract from zβ . Ex-
ploiting this, we can formulate our disentanglement task as
an alternating optimization between our behavior model, i.e.
pθ, qφ, optimizing L(pθ, qφ) and p̂ψ(x|zβ) optimizing (2),
both depending on the posterior qφ(zβ |x, xt).1 To limit the
predictability of p̂ψ(x|zβ), we extend (1) resulting in

max
θ,φ

L(pθ, qφ)− Eqφ(zβ |x,xt) [log p̂ψ(x|zβ)] . (3)

This objective does not explicitly optimize parameters ψ,
thus the predictability of p̂(ψ) can only be diminished by
removing information about x from zβ . Further, note that pθ

1However, note that (2) is not optimized over parameters φ and conse-
quently does not affect qφ(zβ |x, xt).

has access to the conditional xt providing posture informa-
tion and consequently only requires qφ to provide missing
dynamics to generate x. The overall procedure can be consid-
ered as an adversarial task, alternating between optimizing
(2) and (3) in each training iteration. As a result, factoring
out posture information from zβ is indeed the most viable
solution. Moreover, since posture information is excluded
from our representation zβ , pθ(x|zβ , xt) is required to infer
a meaningful continuation of xt depicting behavior β.
Due to the additional constraint in (3), the already existing
pressure to reduce the overall encoded information in zβ
imposed by DKL(qφ(zβ |x, xt)||p(zβ)) is further amplified.
This also increases the risk of posterior collapses when using
recurrent decoders [5], thus strongly affecting the generative
process. Next, we discuss how to alleviate this problem by
relaxing the information bottleneck.

3.3. Relaxing the information bottleneck for im-
proved synthesis

The quality of synthesis depends on the expressiveness
of pθ(x|zβ , xt) which stands in contrast to the regulariza-
tion of the variational posterior qφ(zβ |x, xt) in vanilla varia-
tional autoencoding settings [10, 71]. This becomes evident
as the regularization DKL(qφ(zβ |x, xt)||p(zβ)) minimizes
an upper bound on the mutual information Iqφ(x; zβ) [50],
thus reducing the information captured in zβ . Consequently,
a typical solution is to explicitly maximize the mutual
information [71, 49]. However, computing reliable esti-
mates of Iqφ(x; zβ) is difficult for complex data [19, 4].
Instead, we resort to a relaxation of the regularization
in the original variational problem by only optimizing
DKL(qφ(zβ |x, xt)||p(zβ)) to maintain a certain information
budget IKL, i.e. optimizing

max
θ,φ

Eqφ(zβ |x,xt) [log pθ(x|zβ , xt)]

s.t. DKL(qφ(zβ |x, xt)||p(zβ)) ≤ IKL .
(4)

Similar to Peng et al. [48] who constrain discriminator net-
works, we can optimize (4) using dual gradient decent. Over-
all, we arrive at our final objective L(pθ, qφ) by inserting
the relaxation constraint into (3) and introducing a scalar
coefficient γC and the Lagrange multiplier γKL (which is
still optimized via dual gradient decent), i.e.

L(pθ, qφ) =Eqφ(zβ |x,xt) [log pθ(x|zβ , xt)]
− γKL (DKL(qφ(zβ |x, xt)||p(zβ))− IKL)

− γC Eqφ(zβ |x,xt) [log p̂ψ(x|zβ)] .
(5)

Note, that without our explicit disentanglement, relaxing
DKL(qφ(zβ |x, xt)||p(zβ)) would further encourage the
entanglement of posture and behavior dynamics in zβ .
Relaxing the regularization DKL(qφ(zβ |x, xt)||p(zβ))
comes at the cost of a reduced overlap between the
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Figure 3. Behavior Transfer on Human3.6m. We transfer fine-grained, characteristic body dynamics of an observed behavior xβ to unrelated,
significantly different target postures xt. If required, the target posture is first adjusted by a transition phase before re-enacting the inferred
behavior (e.g. top-right example, third row: walking starting from a bent down posture). Note that both transferred postures and images are
generated by our models.

variational posterior qφ and prior p(zβ) impairing the
sampling ability of our model. Next, we correct this
missmatch by means of a subsequently learned normalizing
flow transformation [33, 15].

3.4. Bridging the gap between prior and posterior

We want to use our model not only to transfer behav-
ior between videos, but also to synthesize novel behavior
based on sampling zβ from the prior distribution. Thus,
strong deviations of the posterior qφ(zβ |x, xt) from p(zβ)
may reduce the syntheses results due to out-of-distribution
samples. To alleviate this issue, we train a normalizing
flow model [47, 33] after our variational behavior model is
optimized. Normalizing flows yield an explicit, invertible
transformation from qφ to p(zβ), thus bridging any potential
gap between them. To this end, these models learn flexible
probability distributions pu(u) over continuous random vari-
ables, such as our behavior representation zβ . In particular,

normalizing flows establish a bijective mapping zβ
Tξ←→ u

using the transformation Tξ = hξ1 ◦ hξ2 ◦ · · · ◦ hξm , a se-
quence of m invertible functions hξj parametrized by ξj by

maximizing the likelihood

Eqφ(zβ |x,xt)
[
log pu(Tξ(zβ))− log |det JTξ(zβ)|

]
. (6)

Here, det JTξ is the Jacobian determinant of the invertible
transformation. Choosing pu(u) to follow the same distri-
bution as p(zβ) establishes our desired bijective mapping
between qφ(zβ |x, xt) and p(zβ). Sampling novel behavior
representations zβ is then performed by zβ = T −1ξ (u), u ∼
pu(u).

4. Experiments

We now investigate the capabilities of the prop osed
method to disentangle pose of a sequence from the under-
lying behavior. The resulting model is evaluated for the
tasks of behavior transfer to different start poses and diverse
sampling from the behavior representation. Evaluation is
performed on the Human3.6m dataset [28], a large-scale mo-
tion capture dataset which contains 3.6 million video frames
of 11 subjects, each of which performs 17 actions. Follow-
ing previous work [70, 69] we use a 17-joint skeleton of
3D joint locations for training on 5 (S1,S5,S6,S7,S8) and
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Method T=1 T=10 T=20 T=30 T=40 T=50 acc. dβ
RE TDE RE TDE RE TDE RE TDE RE TDE RE TDE gt: 0.45 µ± σ

cAE 0.72 8.30 0.28 1.94 0.26 0.34 0.28 0.23 0.30 0.23 0.33 0.23 0.45 0.92±0.34
cVAE 5.29 9.07 5.28 8.95 5.05 8.81 4.82 8.87 4.55 8.86 4.46 8.80 0.13 0.00 ± 0.00
MT-VAE [67] 1.36 8.90 1.40 8.95 1.39 8.66 1.38 8.45 1.34 8.27 1.37 8.12 0.20 4.44 ± 2.05
Ours (γC = 0, IKL = 50) 1.71 9.01 1.46 7.92 1.22 6.95 1.17 6.15 1.18 5.58 1.30 5.33 0.35 2.82 ± 0.79
Ours (γC = 0, IKL = 100) 1.24 8.99 0.89 7.09 0.81 5.55 0.78 4.33 0.73 3.48 0.80 3.13 0.39 3.47 ± 0.93
Ours (γC = 0, IKL = 200) 1.01 8.92 0.67 5.93 0.61 3.74 0.59 2.29 0.58 1.48 0.60 1.30 0.40 4.06 ±1.18
Ours (IKL = 50) 1.96 9.06 1.83 8.74 1.74 8.54 1.67 8.33 1.53 8.12 1.59 7.94 0.38 1.55 ± 0.61
Ours (IKL = 100) 2.01 9.08 1.96 8.78 1.88 8.57 1.76 8.37 1.77 8.15 1.76 8.0 0.38 1.60 ±0.78
Ours (IKL = 200) 1.62 9.06 1.47 8.97 1.56 8.90 1.47 8.77 1.47 8.58 1.38 8.36 0.39 1.58 ±0.71

Table 1. Evaluation of Behavior Transfer. We compare different models on the task of behavior transfer using different metrics. The
regression error ’RE’ denotes the mean squared error (MSE) when predicting the source behavior sequence xβ from the learned behavior
representation zβ using a regression network trained on this task. ’TDE’ refers to the total displacement error measured as the MSE
between xβ and the re-enactment xR. ’acc’ denotes action classifier accuracy when using the respective behavior representations zβ as input.
’gt:0.45’ denotes the accuracy of an action classifier directly trained in ground-truth keypoint sequences, thus representing an upper bound
on performance. For the latent space distance dβ between the encodings of the source behavior xβ and the re-enactment xR we report mean
and standard deviation. Each metric is evaluated at timesteps T ∈ {1, 10, 20, 30, 40, 50}. Since we have no ground-truth data available for
behavior transfer we cannot directly measure transfer performance. Instead, in Sec. 4.2 we show how the interplay of these metrics allow to
evaluate transfer performance.

testing on two subjects (S9,S11). We refer the reader to the
supplementary or project page2 for video material.

4.1. Architecture and implementation details

For the task of human behavior transfer, we use sequences
of 50 frames as input for our network. The encoder-decoder
networks representing qφ(zβ |x, xt) and pθ(x|zβ , xt) are
both implemented as a single-layer LSTM [27] with a hidden
dimensionality of 1024. Mean and variance of qφ(zβ |x, xt)
are realized as linear layers based on the final hidden state
of the encoder. For our decoder pθ(x|zβ , xt) we initialize
the hidden state with the behavior representation zβ . The
target posture xt is the input state of the decoder at the first
time step. Subsequently the decoder uses its own predictions
from the previous time step as input. For generating the
individual postures, we follow [42] and use a single linear
layer on top of the LSTM output combined with residual
skip connection to the input. The generative model p̂ψ is im-
plemented as a three-layer MLP to predict postures x given
zβ . We model pθ(x|zβ , xt) and pψ(x|zβ) as Gaussian, thus
the expectations in Eq. 5 translate to mean squared errors.
We train the network for 50 epochs and set γC = 0.1 and
IKL = 100 as discussed in the quantitative evaluation.

Normalizing flow model Tξ. Our normalizing flow model
Tξ is implemented as a stacked sequence of 15 invertible
neural networks based on an input dimensionality of D =
1024. Each consists of 3 blocks of subsequently applied
actnorm [33], affine coupling layers [16] and shuffling layers.
The affine coupling layers consist of 2 fully connected layers
with dimensionality D = 1024. We trained the normalizing
flow model on a single Titan Xp for 5 epochs with batchsize

2https://cutt.ly/5l7rXEp

64 and ADAM [32] optimizer with learning rate 6.5× 10−6.
Further information regarding our normalizing flow model
is provided in the Appendix A.1.

Model for posture-appearance transfer. In order to be
able to synthesize realistic RGB videos of human behavior,
we translate our generated postures to RGB images. To this
end, we utilize our proposed framework for the task of shape
and appearance disentanglement [13]. We train a model
to obtain an appearance representation from static images,
which is independent of the corresponding posture informa-
tion. Thus, we can use our method to transfer behavior from
a source sequence to a given target posture and generate an
animated video sequence by frame-wise synthesizing RGB
images. More details on our posture and appearance model
and further results can be found in the Appendix B.

4.2. Behavior re-enactment

We now evaluate our proposed model qualitatively and
quantitatively for the task of behavior transfer and its abilities
to sample and synthesize novel behavior.

Qualitative evaluation. Figure 3 shows examples of trans-
ferred behavior. We show the posture sequence xβ exhibiting
a source behavior β (top row) and its transfer to different,
unrelated postures xt. The re-enactments depict both the
re-enacted posture sequence and the rendered RGB video
frames based on the model for posture and appearance trans-
fer. Since our model captures behavior independent of pos-
ture, it successfully transfers only the characteristic body
dynamics of β and infers potentially needed transitions itself.
As a result, the target posture xt is naturally animated to
perform behavior β independent of diverse target postures,

6
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Method N=10 N=50
ASD FSD ASD FSD

cVAE [70] 0.25 0.36 0.16 0.22
DSF [70] 0.38 0.62 0.31 0.42
Ours 0.63 0.88 0.45 0.58

Table 2. Evaluation of Sampling Capabilities. (a) Quantitative
evaluation of diversity with ASD and FSD [70], numbers are taken
from [70].

such as standing or sitting. For instance, in the example at
the left top, each person accurately raises both hands to its
head. Note that, in the last example on the top left, the per-
son does not change its posture since the hands are already
up. Moreover, the kneeling person on the bottom left only
lowers its torso as its knees are already placed on the ground
and cannot be bent further. More visual examples can be
found in the Appendix A.3. Video examples are provided on
our project page2.

Quantitative evaluation. We now evaluate how well our
model transfers behavior β extracted from a source sequence
xβ to an initial, unrelated target posture xt taken from ran-
dom, different sequences. Meaningful re-enactment of β
should only transfer characteristic body dynamics to a target
posture xt. We compare our model to different baseline
models, i.e. conditional autoencoder (cAE), vanilla condi-
tional variational autoencoder (cVAE) and our model with
and without our proposed posture disentanglement. Each
model uses the same architectures except for deviations due
to individual training objectives: The cAE is trained without
disentanglement and without variational bottleneck. The
cVAE is trained on the training objective Eq. (1). More-
over, we compare the MT-VAE [67] which uses latent space
arithemtics to transform between different actions.
A model failing this task would typically generate (i) se-
quences which rather exactly copy full postures of the source
sequence xβ in contrast to transferring only its characteristic
dynamics to xt; or (ii) generating behavior different to β
such as some likely future behavior of xt. To identify (i),
we measure the transfer displacement error (TDE), i.e. the
displacement error between postures of the re-enactment xR
and source xβ at time-steps T . For (ii), since we have no
ground-truth available for behavior transfer, we measure the
average euclidean distance dβ in the representation space zβ
between encodings of xβ and xR. Combined, a well trans-
ferring model should yield re-enacted sequences xR which
is dissimilar to xβ , thus not merely copying postures (i.e.
large TDE). Given this, both sequences should be similar in
representation space (i.e. small dβ) to indicate their simi-
larity in behavior. Moreover, the representations need to be
informative to exclude degenerated solutions. For the latter
we examine their benefit for action classification on H3.6M

Method Type of synthesis
self transfer prior flow

MT-VAE [67] 0.49 0.17 - -
Ours (γC = 0) 0.49 0.14 0.09 0.12
Ours 0.49 0.23 0.13 0.23

Table 3. Realism of behavior generations. Evaluation of sampling
quality using a discriminator classifying between ground-truth se-
quences and behavior generations of different origins: ’self’ de-
notes video reconstructions, ’transfer’ denotes generations depict-
ing actual behavior transfer, i.e. using a randomly sampled starting
posture and a extracted behavior qφ(zβ |x, xt), ’prior’ denotes syn-
thesizing behavior sampled from the prior representation p(zβ) and
’flow’ refers to synthesizing behavior sampled using the invertible
mapping Tξ.

(acc.). For each experiment we provide detailed protocols
and implementation details in the Appendix A.2.
Tab. 1 evaluates these experiments. We observe that cAE
exhibits a strong decline in TDE values as T increases, re-
sulting in TDE values close to 0. Thus, this model accurately
copies the posture sequence xβ , instead of inferring behavior
β and potentially needed transitions itself (cf. suppl. video
material). Consequently, its behavior representation only
captures posture information, rather than body dynamics. In
contrast, the cVAE model consistently reaches high TDE
scores, thus generating posture sequences which are very
different from xβ . However, the distance dβ shows that the
model suffers from posterior collapse, hence zβ is neglected
and only likely continuations following xt are predicted (see
also Appendix A.2). Relaxing the information bottleneck
of cVAE (i.e. our model without disentanglement, Eq.(4))
alleviates the posterior collapse and zβ becomes informative.
Looking at different settings for IKL, we see that TDE values
slowly decrease with T and ranges between cAE and cVAE,
while exhibiting large values of dβ . We attribute this to a
distorted latent representation being learned. In contrast, our
full model with explicit disentanglement of behavior and pos-
ture exhibits large TDE values matching those of the cVAE
while at the same time mapping xβ and xR close in zβ . Thus,
since postures are very different, closeness in zβ arises from
similarity in body dynamics, highlighting actual behavior
transfer. The accuracy of the action classifier (acc.) confirms
that the captured dynamics are informative, almost matching
the classifier result when training on ground truth sequences.
Moreover, the classifier performance for MT-VAE reveals
that their latent space is significantly less informative than
our behavior representation, which indicates limited motion
transfer capabilities. Indeed, a large mean distance dβ of
4.44 shows a strong difference in representation between
source and re-enacted behavior, most likely due to the linear
arithemitcs assumption not being hold.

To provide an additional, explicit measure for disentan-
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Pose-Knows HP-GAN GMVAE DSF DLOW Ours
APD 6.72 7.24 6.77 9.33 11.74 12.24

Table 4. Evaluation of Sampling Diversity. Our model outperforms
other approaches on human motion synthesis in terms of APD [69].
Numbers are taken from [69].

glement of behavior and posture, we adapt an evaluation
procedure inspired by works on identifying latent factors of
variation [44]. To this end, we train a regression network to
predict posture coordinates of xβ from its encoding zβ at
different time-steps and report the average regression errors
(RE) in Tab. 1. Naturally, the cAE model results in very low
errors due to copying, while the cVAE exhibits large REs
due to the posterior collapse. Comparing our model with and
without disentanglement demonstrates consistently higher
prediction errors, indicating that only few posture informa-
tion is encoded in zβ . Moreover, our analysis shows that our
model is robust to the choice of IKL. In the remainder of the
experiments we choose IKL = 100.

4.3. Sampling and synthesis of novel behavior

We now evaluate our model on the task of synthesizing
novel behavior by sampling behavior representations zβ from
the prior distribution p(zβ). Following other approaches for
human motion synthesis [69, 70, 1] we evaluate the aspect
of sampling quality [1] and diversity [69, 70]. To address the
first we train a binary classifier to distinguish between 25k
ground-truth and 25k generated sequences. The accuracy of
the classifier determines the realism of the evaluated samples
and is reported in Tab. 3. The implementation details for
the classifier can be found in the Appendix A.2. Posture se-
quences synthesized using the explicit invertible mapping Tξ
between prior and posterior qφ(zβ |x, xt) are more realistic
than directly using prior samples. This is explained by the
corrected mismatch between posterior and prior distribution
and clearly demonstrated by the visual comparisons in the

End Posture of Samples

Figure 4. Qualitative visualization of diversity by showing the end
poses from our sampled behaviors.

videos contained in the accompanying video material. More-
over, we observe that our explicit disentanglement of posture
and behavior significant improves the quality of samples.
In particular, we also outperform MT-VAE [67] by relative
35% in behavior re-enactment (’transfer’).
For evaluating diversity we follow the evaluation protocol of
[69, 70] by using the following metrics: (i) Average Pairwise
Distance (APD): Average euclidean distance between all
pairwise combinations of generated sequences; (ii) Average
Self Distance (ASD): Average euclidean distance between a
generated sequence and its closest neighbor sequence among
generations; and (iii) Final Self Distance (FSD): Euclidean
distance between the last posture of a generated sequence
and its closest neighbor’s final posture. Note, while APD is
measuring the overall variance of the generated sequences,
ASD and FSD assess the uniqueness of samples. Tab. 2 com-
pares ASD and FSD scores of our model with the cVAE and
the diversity sampler function (DSF) from [70] for sample-
set sizes of K ∈ {10, 50} while Tab. 4 we provide APD
comparisons with various motion synthesis approaches. For
each metric we outperform existing approaches by a signif-
icant margin, in particular such approaches [70, 69] which
explicitly aim at sampling diversity. Finally, we visually
demonstrate the diversity of our samples in Fig 4 by showing
the final postures of sampled behaviors.

5. Discussion

We presented a conditional generative model for con-
trolled synthesis and transfer of human behavior. To this
end, we learn a dedicated representation for human behavior
disentangled from posture. By extracting the characteristic
body dynamics from a video depicting a certain behavior, our
model is able to animate persons observed in significantly
different postures. A particular challenge arises from animat-
ing postures which allow for no direct transfer of behavior
dynamics, but require an intermediate transition. Correct
inference of such transition is essentially a generalization
problem asking for synthesis outside the training distribution.
While our model successfully infers such transitions to a cer-
tain degree, it fails in cases of complex transitions needed,
such as enacting a walking behavior by a person which is
lying on the ground. This shows that our introduced problem
requires a deep understanding of behavior, thus posing a
new challenge for research on human motion synthesis in
general.
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Appendix
A. Behavior Model
A.1. Training and Implementation Details

Behavior model Most of the implementation details of
our behavior model are already described in the main paper
in Sec. 4. We train our model on a single Titan Xp using
ADAM [32] optimizer with learning rate 0.0001 which is
decreased after 10, 25 and 35 epochs. For data preprocessing,
we normalize the posture keypoints to have zero mean and
unit variance.

Invertible Transformation Tξ To highlight the need for
learning an explicit mapping between the prior p(zβ) and
the posterior q(zβ |x, xt), we plot in Fig. 5 2D UMAP [45]
visualizations of samples drawn from these distributions
without and with using Tξ. Fig. 5 (a) shows a clear mis-
match between both distributions. Fig. 5 (b) demonstrates
that applying the transformation Tξ helps to align prior and
posterior, which is also reflected by the results discussed in
the paragraph ’Behavior Sampling’.
Our normalizing flow model Tξ is implemented as a stacked
sequence of 15 invertible neural networks based on an input
dimensionality of D = 1024. Each consists of 3 blocks of
subsequently applied actnorm [33], affine coupling layers
[16] and shuffling layers. The affine coupling layers consist
of 2 fully connected layers with dimensionality D = 1024.
We trained the normalizing flow model on a single Titan Xp
for 5 epochs with batchsize 64 and ADAM [32] optimizer
with learning rate 6.5× 10−6.

A.2. Protocols of Ablation Studies

Sample-Reality Classifier In Fig. 4 (b) of our main paper,
we evaluate the quality of our generations with a recurrent
binary classifier similar to [1]. The task of the classifier is to
distinguish between 25k samples ground-truth sequences and
25k synthesized generations based on samples from the prior
distribution. The classifier consists of a single layer GRU
network with 256 hidden dimension for feature extraction,
followed by a fully connected layer before applying the
sigmoid function for binary classification. We optimize the
classifier via stochastic gradient descent for 2k iterations,
with a batch size of 256, a learning rate of 0.001 and a
momentum of 0.9.

Average Regression Error (RE) In Tab. 1 of our main
paper we provide an explicit quantitative evaluation of the
disentanglement of posture and behavior. We adopt the ex-
periments of [44] and train a Multi-Layer Perceptron (MLP)
consisting of 3 linear layers with 512, 256 and 51 neurons
to predict the keypoint locations of postures in sequence

xβ at different time-steps T based on their corresponding
extracted behavior representation zβ . Therefore, we train the
MLP for 20 epochs with Adam [32] optimizer and a learning
rate of 1×10−3 on the test set as described in the main paper.
Intuitively, if zβ captures no information about posture, RE
is high and converges to 0 is lots of posture information is
captured.

Action Classifier In Sec. 4 of our main paper we evalu-
ate the informativeness of the behavior representation zβ by
means of their benefit as a feature representation for action
classification on Human3.6M dataset [28] (acc. values of the
evaluated models in Tab. 1). For this purpose, we directly
train a linear classifier on top of the frozen behavior encoder.
For training and evaluation we use the same train-test split
as described in the main paper. For the validation classi-
fier which results in an test accuracy of 45% (’gt:0.45’, Tab.
1, main paper), we train a classifier with trainable feature
representation which has the same architecture as our behav-
ior encoder qφ(zβ |x, xt) to predict the action labels from
ground truth sequences of 50 frames.

A.3. Additional Results

Subsequently, we show additional visual results depicted
as figures in this manuscript or as videos in the folder

’videos’.

Behavior Transfer We show more examples of behavior
transfer in Fig. 6-11, both as postures and RGB images,
similar to Fig. 3 of our main paper to further demonstrate
the effectiveness of our approach. Moreover, we also show
videos based on both our model and the cAE/cVAE models
which we quantitatively evaluated in Sec. 4 (Quantitative
evaluation).

(i) cAE: The video ’behavior transfer CAE.mp4’ shows
behavior re-enactments based on the cAE model. The
topmost row depicts the source behavior sequence xβ ,
while the leftmost column shows different target postures
xt. Based on these we show all pairwise combinations. We
see that in general the cAE model quickly warps from xt to
some early posture of xβ . Next, it almost exactly copies the
remaining posture sequence xβ . Thus, given a certain xβ
each re-enacted sequence is identical and independent of
the given target pose xt, rather than transferring only the
behavior dynamics to the observed target postures. This is
explained by the missing disentanglement of posture and
behavior, which allows the cAE model to fully capture the
complete posture information of xβ in zβ .

(ii) cVAE: The video ’behavior transfer CVAE.mp4’
shows behavior re-enactments based on the cVAE model.
The topmost row depicts the source behavior sequence xβ ,
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(a) (b)
Figure 5. 2D-UMAP of prior and posterior samples without (a) and with (b) learning the normalizing flow transformation Tξ for distribution
alignment.

while the leftmost column shows different target postures
xt. Based on these we show all pairwise combinations. We
observe that this model predicts a likely future continuation
based on the target posture xt, thus not using the behavior
representation zβ for additional, dedicated information
describing the source sequence xβ . This is explained by
posterior collapse, i.e. mean and variance of qφ(zβ |x, xt)
collapsing to almost constant values.

(iii) Ours: The videos ’behavior transfer1.mp4’ and
’behavior transfer2.mp4’ show behavior re-enactments
based on our proposed behavior transfer model. In both
videos, the topmost row depicts the source behavior
sequence xβ , while the leftmost column shows different
target postures xt. Based on these we show all pairwise
combinations. We see that our model extracts the be-
havior dynamics from diverse source sequences xβ and
successfully transfers them to arbitrary target postures
xt resulting in meaningful re-enactments of behavior β.
Moreover, ’behavior transfer1 RGB.mp4’ and ’behav-
ior transfer2 RGB.mp4’ show RGB video syntheses of our
results using our model for posture-appearance transfer (see
Appendix B and main paper).

Behavior Sampling We now compare syntheses of novel
behavior based on samples zβ drawn from the prior distribu-
tion p(zβ), with and without using the transformation Tξ for
correcting the mismatch with the posterior qφ(zβ |x, xt). For
this purpose, we recursively synthesize behavior using sam-
pled behavior representations zβ and the last posture of the

previously generated posture sequence. For detailed compar-
ison, we show such a concatenated posture sequence without
using Tξ in video ’sample loop prior.mp4’ and with Tξ in

’sample loop flow.mp4’. We observe that the first suffers
from synthesis artifacts due to out-of-distribution samples
zβ , which in particularly become evident at the beginning of
each behavior synthesis. In contrast, the recursively gener-
ated sequence using transformation Tξ does not exhibit such
artifacts and consequently results in a much smoother and
more realistic sequence of diverse human behavior.
Moreover in video ’samples.mp4’ we show behavior synthe-
sis based on random sampling zβ from the prior distribution
which are then transformed using Tξ. The leftmost column
depicts the target postures xt with each performing 6 ran-
domly sampled behaviors. Note, that for each target posture
xt we use different samples zβ .

Behavior Nearest Neighbors To also demonstrate visu-
ally that our learned representation zβ actually captures
behavior dynamics while discarding posture information,
we find nearest neighbours to the ground-truth training se-
quences. Therefore, we re-enact a source behavior xβ us-
ing a random target posture xt. Next, we find its nearest
neighbour in the training sequences based on (i) distance
between behavior representations zβ and (ii) average dis-
tances between postures sequences (based on alignment w.r.t.
the pelvis keypoints). The video ’nearest neighbors.mp4’
shows our results: Each column depicts a separate example
showing the ’Source Behavior’, the ’Nearest Neighbor based
on Behavior representation’, the ’Behavior Re-enactment
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of Source Behavior’ and the ’Nearest Neighbor based on
Posture’, i.e. average posture distance. We observe that
while there exist close training sequences in terms of posture,
the nearest neighbors based on zβ show similar behavior
dynamics while being dissimilar in posture.

Behavior Interpolation To further analyze the regular-
ity of our behavior representation zβ , we interpolate be-
tween the behavior observed in two sequences x1

β and
x2
β . To this end, we first extract their corresponding be-

havior representations z1β , z
2
β and interpolate between them

at equidistant steps, i.e. (1 − λ) · z1β + λ · z2β ; λ ∈
{0.0, 0.2, 0.4, 0.6, 0.8, 1.0}. Next, we generate a sequence
of interpolated behavior using our decoder pθ(x|zβ , xt) with
xt being the first frame of x1

β , respectively x2
β . Note, that for

λ ∈ {0, 1.0} we basically reconstruct the source sequences
x1
β , x2

β . We show the resulting posture sequences in ’inter-
polations 01.mp4’-’interpolations 03.mp4’ and with addi-
tional RGB image overlay in ’interpolations rgb 01.mp4’-

’interpolations rgb 03.mp4’.

Behavior Generalization We now demonstrate the robust-
ness of our proposed model to unseen behavior dynamics
by leaving out sets of entire classes during training3 and,
subsequently, performing behavior transfers based on source
sequences xβ sampled from these classes.
We show results for both excluding walking actions (’walk-
ing’, ’walking dog’, ’walking together’) in video ’behav-
ior transfer generalization walking.mp4’ and sitting actions
(’sitting’, ’sitting down’, ’purchases’) in video ’behav-
ior transfer generalization sitting.mp4’. The top rows de-
pict the source behaviors xβ and the leftmost columns show
the target postures xt. In both cases our model is able to cor-
rectly infer the body dynamics characterizing these actions.

B. Posture and Appearance Model

Our proposed conditional framework for disentanglement
can also be applied for the task of appearance transfer. In-
stead of disentangling posture from behavior, we disentangle
posture from appearance of persons depicted on static im-
ages and use the resulting model to generate RGB video
sequences based on the re-enacted posture sequences as
reported in the main paper. Note that the posture and appear-
ance model operates on 2D keypoints. Therefore, we project
the 3D keypoints locations of the re-enacted sequences onto
the image plane. Subsequently, we provide implementation
details and additional experiments on DeepFashion [37] and
Market1501 [72] datasets.

3Note, that we only use labels for excluding training sequences in this
experiment, but not for the training procedure itself.

B.1. Architecture and Losses

Our model for appearance transfer is based on a UNet
architecture similar to VUnet [20]. The UNet maps from
posture xt, i.e. keypoint skeletons, to RGB images with
appearance information added at the bottleneck which is
extracted from some image Iα by an appearance encoder.
Now, we provide implementation details for the posture- and
appearance encoder, as well as the decoder.

Appearance encoder: The appearance encoder, which is
the equivalent of the behavior encoder for the task of posture-
appearance disentanglement, is implemented as a fully con-
volutional network. We gradually downsample the input
image Iα up to a spatial size of 4 × 4. Each downsam-
pling stage consists of 2 ResNet blocks and downsampling
is performed using a convolutional layer with stride 2. We
double the number of feature channels at every stage up to
a maximum number of 128 which is then kept fixed. At the
bottleneck we compute mean and variance both based on the
layer outputs of spatial size 8 and 4 [20].

UNet encoder and decoder : Both the encoder and de-
coder branch of the UNet are similarly designed as the ap-
pearance encoder with skip connections connecting them at
each stage. For upsampling in the decoder we use bilinear
interpolation. At the bottleneck, we concatenate the fea-
ture maps of the posture stream with the encodings of the
appearance encoder.

Auxilliary decoder: The auxilliary decoder consists of
two convolutional layers with kernel size 8 and 4. It takes
the appearance encodings as input (both at spatial sizes 8 and
4) and outputs one vector for each with dimensionality 256.
Following that, we add 6 linear layers (with dimenionalities
512,512,256,128,64,34) to predict the posture keypoints.

Optimization: For optimizing the likelihood
Eqφ(x|zα, xt) similar to Eq. (5), with zα denoting
the appearance encoding, we employ both standard pixel-
wise mean squared error and a perceptual loss [20]. The
latter is a feature matching loss and often used to emphasize
on structural information such as contours and texture. It is
formulated as

Lα,feat =
∑
k

λk · ‖Fk(Iα)− Fk(Ĩα)‖1 (7)

where Fk denote feature layers of a pretrained VGG19 net-
work [53], the weights λk control the amount contribution
of each layer k, Iα is the target image to be reconstructed
and Ĩα its reconstruction, i.e. output of the decoder. Note
that the model does not require image pairs of persons with
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Method DeepFashion Market1501
IS SSIM IS SSIM

VUnet (Esser et al. 2018) 3.09 0.79 3.21 0.35
DIG [40] 3.23 0.61 3.44 0.10
PG2 [39] 3.09 0.76 3.46 0.25
Ours 3.08 0.80 3.16 0.35

Table 5. Evaluation of our shape-appearance transfer model based
on image quality metrics on DeepFashion [37] and Market1501 [72]
(Reconstruction Setting).

the same appearance label and can hence be trained solely
by reconstructing static image frames.

B.2. Training Details

Human3.6m On Human3.6M, we train our appearance
model for 150k iterations using ADAM optimizer [32] with
learning rate 0.0005. During the alternating optimization,
we perform 5 update steps of the auxiliary decoder for
each update step of the appearance model. Further, we
set IKL = 1000, γC = 1, λk = 1 ∀ k and use no inplane
normalization [20].

DeepFashion On DeepFashion [37], we train our appear-
ance model for 200k iterations using ADAM optimizer [32]
with learning rate 0.0005. During the alternating optimiza-
tion, we perform 10 update steps of the auxiliary decoder for
each update step of the appearance model. Further, we set
IKL = 1000, γC = 5, λk = 1∀ k and use inplane normaliza-
tion [20].

Market On Market [72], we train our appearance model
for 150k iterations using ADAM optimizer [32] with learning
rate 0.0005. During the alternating optimization, we perform
5 update steps of the auxiliary decoder for each update step
of the appearance model. Further, we set IKL = 1000, γC =
1, λk = 1∀ k and use inplane normalization [20].

B.3. Additional Results

To evaluate our model for appearance transfer also on
established datasets dedicated to this task, we report in
Fig. 5 Inception Score (IS) [52] and Structured Similar-
ity (SSIM) [63] on DeepFashion [37] and Market1501 [72]
dataset. We observe that our model performs competitively
with the state-of-the-art on human shape-appearance transfer,
thus indicating the general applicability of our disentangle-
ment framework. Moreover, in Fig. 12 we provide example
appearance transfers. Top rows depict the target posture and
leftmost columns depict the source appearance. Similarly, in
Fig. 13 we show transfers between posture and appearance
for the Market1501 [72] dataset.

15



T
ra

ns
fe

rr
ed

 b
e

ha
vi

or

Figure 6. Behavior Transfer on Human3.6m [28]. We transfer fine-grained, characteristic body dynamics of an observed behavior xβ to
unrelated, significantly different target postures xt. Best viewed in PDF when zoomed in.
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Figure 7. Translation of Fig. 6 to RGB images. We transfer fine-grained, characteristic body dynamics of an observed behavior xβ to
unrelated, significantly different target postures xt. Best viewed in PDF when zoomed in.
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Figure 8. Behavior Transfer on Human3.6m [28]. We transfer fine-grained, characteristic body dynamics of an observed behavior xβ to
unrelated, significantly different target postures xt. Best viewed in PDF when zoomed in.
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Figure 9. Translation of Fig. 8 to RGB images. We transfer fine-grained, characteristic body dynamics of an observed behavior xβ to
unrelated, significantly different target postures xt. Best viewed in PDF when zoomed in.
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Figure 10. Behavior Transfer on Human3.6m [28]. We transfer fine-grained, characteristic body dynamics of an observed behavior xβ to
unrelated, significantly different target postures xt. Best viewed in PDF when zoomed in.
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Figure 11. Translation of Fig. 10 to RGB images. We transfer fine-grained, characteristic body dynamics of an observed behavior xβ to
unrelated, significantly different target postures xt. Best viewed in PDF when zoomed in.
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Figure 12. Posture-Appearance transfer on DeepFashion [37]. Top row depicts target posture and leftmost row depicts source appearance.
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Figure 13. Posture-Appearance transfer on Market1501 [72]. Top row depicts target posture and leftmost row depicts source appearance.
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